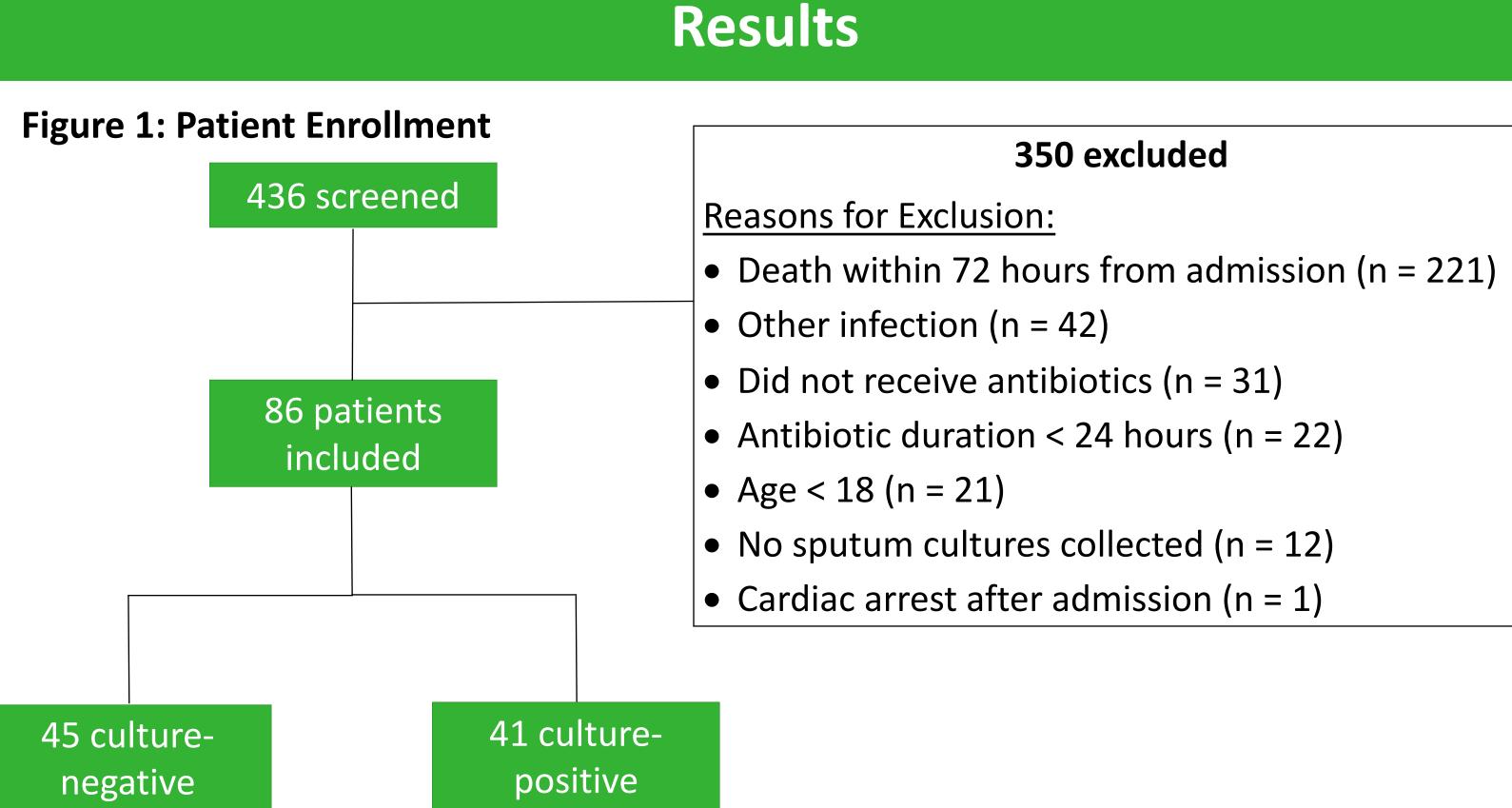


Evaluation of Antibiotic De-escalation in Post Cardiac Arrest Patients with Culture-negative versus Culture-positive Aspiration Pneumonia


Natasha R. Herzig, PharmD; Tara L. Harpenau, PharmD, BCIDP; Kevin M. Wohlfarth, PharmD, BCPS, BCCCP, BCCP; Alicia M. Hochanadel, PharmD, BCPS ProMedica Toledo Hospital | Toledo, OH

Background

- Due to the forceful nature of cardiopulmonary resuscitation during cardiac arrest, aspiration of gastric contents is fairly common¹
- The most common pathogens in aspiration pneumonia post cardiac arrest include Staphylococcus aureus, Streptococcus pneumoniae, Haemophilus influenzae, and Escherichia coli^{2,3}
- Previous literature has shown no difference in clinical outcomes when discontinuing antimicrobial therapy for suspected aspiration pneumonia with negative respiratory cultures - Application is limited in cardiac arrest patients⁴
- The purpose of this study was to evaluate antibiotic de-escalation practices for suspected aspiration pneumonia in this patient population

Methods

- **Design**: single-center, retrospective cohort
- Inclusion criteria: patients 18 years or older presenting between November 2016 and October 2019 with a documented out-of-hospital arrest < 24 hours prior to admission, received antibiotic therapy for aspiration pneumonia, and had a respiratory culture collected during the index admission
- **Exclusion criteria**: bacterial infection other than aspiration pneumonia, antibiotics administered prior to admission, known pregnancy or breast feeding, cystic fibrosis, or death within 72 hours of admission
- **Primary endpoint**: incidence of antibiotic therapy de-escalation before day seven in culturenegative vs culture-positive patients
- Secondary endpoints: intensive care unit (ICU) length of stay (LOS) and overall hospital LOS, inhospital mortality, ventilator-free days, type of de-escalation, and incidence of *Clostridioides difficile* infection
- **Definitions:**
- Antibiotic de-escalation: discontinuation of methicillin-resistant *Staphylococcus aureus* (MRSA), *Pseudomonas aeruginosa*, and/or atypical coverage or discontinuation of all antibiotics based on culture and serology results
- Risk factors: Healthcare-acquired pneumonia (HCAP) risk factors per the 2005 IDSA
- guidelines, MRSA and *Pseudomonas aeruginosa* risk factors per the 2019 IDSA guidelines^{5,6} Culture-positive: bacterial pathogen(s), not considered normal flora, isolated from
- respiratory cultures
- Culture-negative: no pathogen(s) isolated from respiratory cultures or growth of normal respiratory flora only

Results

Table 1: Baseline Characteristics						
Characteristic	Culture-negative (n = 45)	Culture-positive (n = 41)	p-value			
Age, years [median (IQR)]	63 (58-73)	59 (44-70)	0.07			
Male	24 (53.3)	31 (75.6)	0.03			
Co-morbidities						
COPD	15 (33.3)	11 (26.8)	0.51			
CHF	12 (26.7)	10 (24.4)	0.81			
Initial presenting rhythm						
VF/VT	12 (26.7)	6 (14.6)	0.17			
PEA or asystole	31 (68.9)	31 (75.6)	0.49			
Unknown	2 (4.4)	4 (9.8)	0.33			
Cause of PEA or asystole						
Cardiac cause	12 (26.7)	9 (22.0)	0.61			
Respiratory cause	17 (37.8)	14 (34.1)	0.73			
Drug overdose	2 (4.4)	8 (19.5)	0.03			
Chest x-ray with infiltrates	25 (55.6)	30 (73.2)	0.09			
Time to ROSC, minutes [median (IQR)]	20 (10-30)	15 (5-20)	0.11			
Targeted temperature management	38 (88.4)	33 (80.5)	0.32			
Vasopressor requirement	32 (71.1)	30 (73.2)	0.83			
Mechanical ventilation required	44 (97.8)	39 (95.1)	0.93			

All numbers represented as n (%) unless otherwise stated

Abbreviations: COPD = chronic obstructive pulmonary disorder; CHF = congestive heart failure; PEA = pulseless electrical activity; ROSC = return of spontaneous circulation; VF = ventricular fibrillation; VT = ventricular tachycardia

Figure 2: Risk Factors vs Empiric Antibiotic Coverage

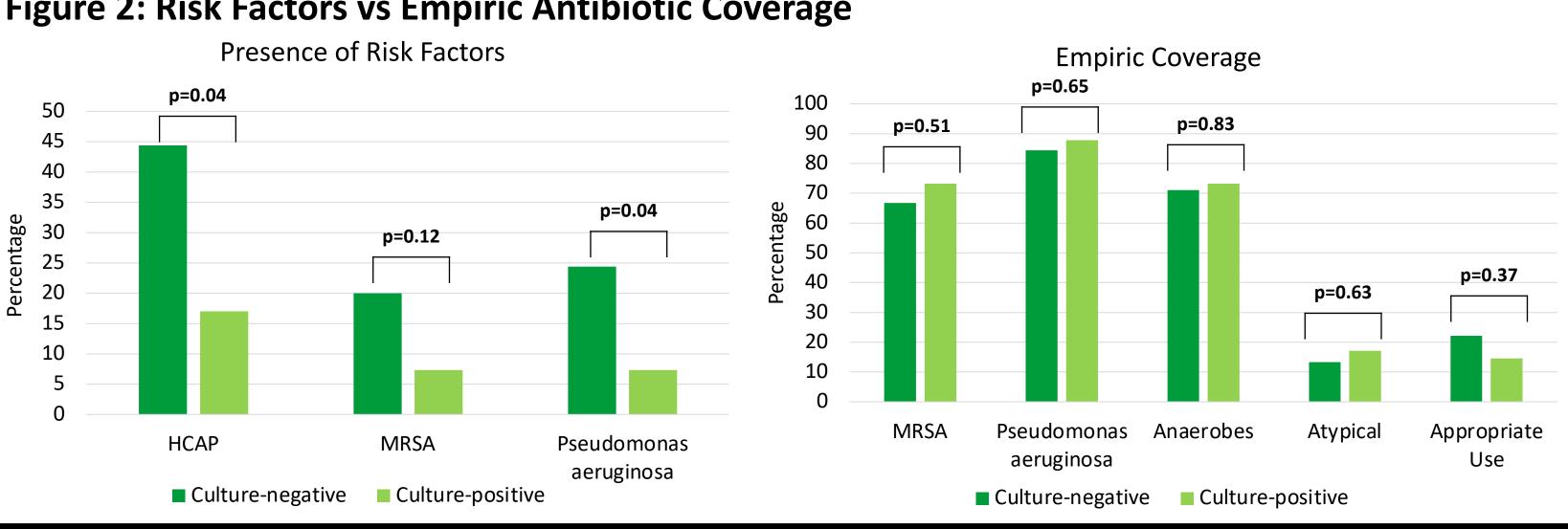
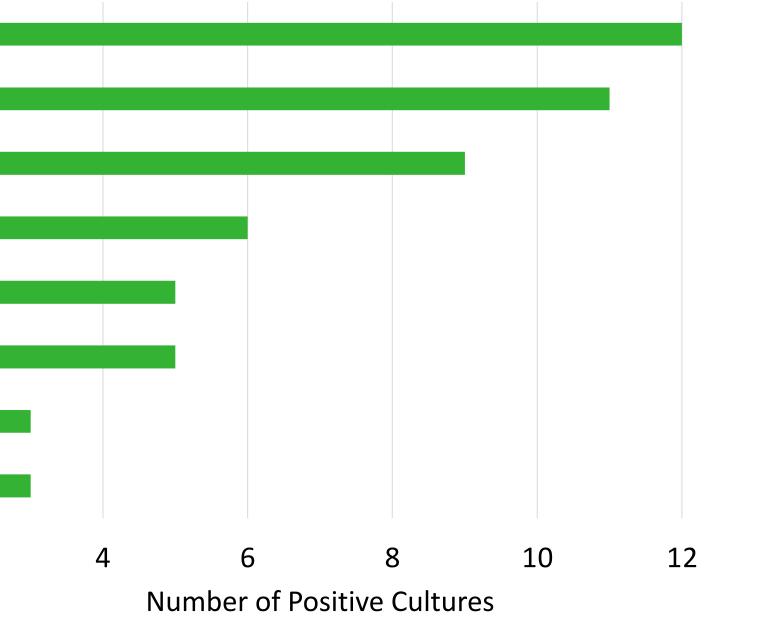


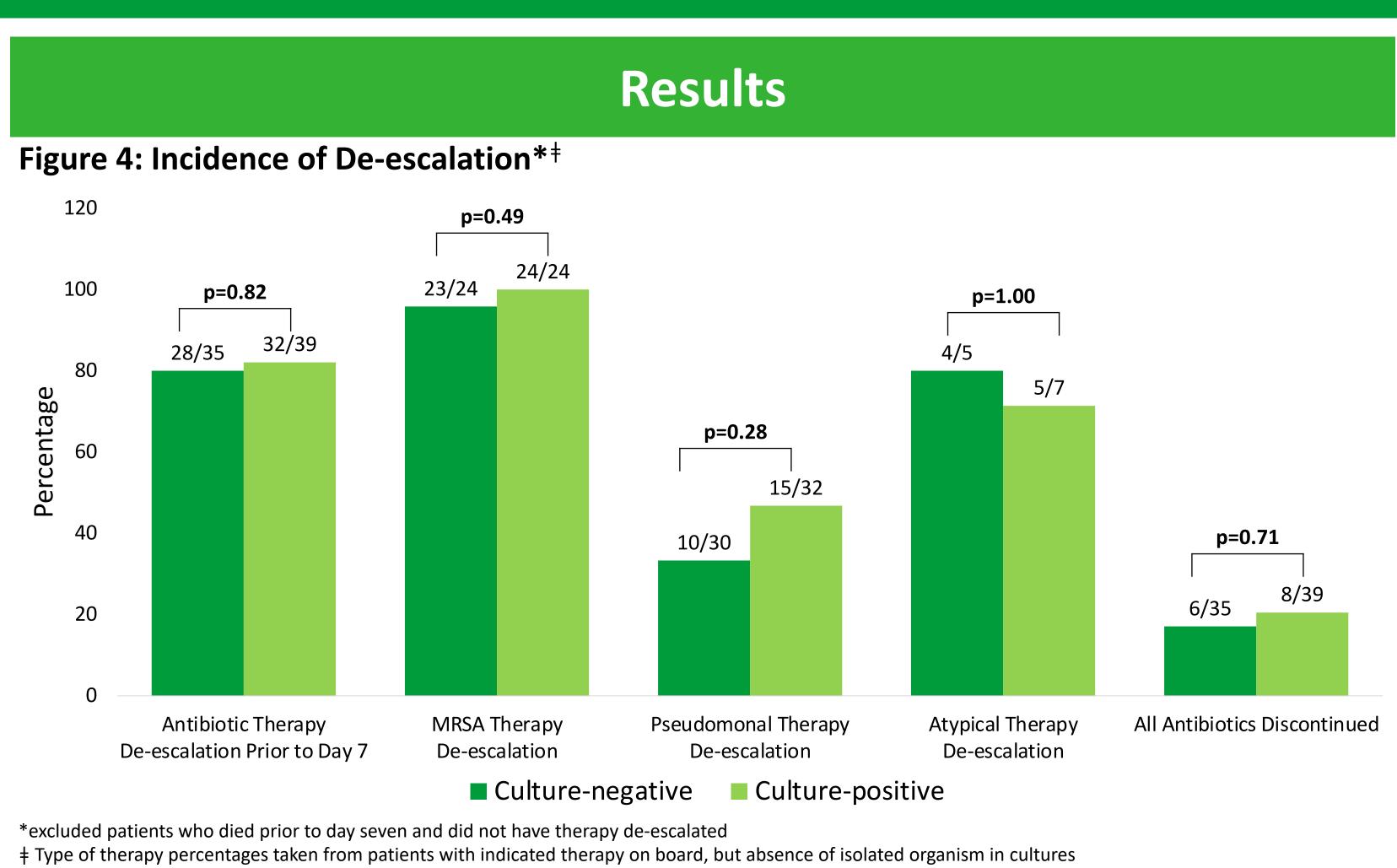
Table 2. Treatment Characteristics

Characteristic	Culture-negative (n = 45)	Culture-positive (n = 41)	p-value
Antibiotic duration, days [median (IQR)]	7 (6-8.5)	8 (7-10)	0.09
Day of de-escalation [median (IQR)]	3 (2-6)	4 (3-6)	0.17
Infectious diseases consultant involvement	3 (6.7)	11 (26.8)	0.02
Pharmacist de-escalation intervention	18 (40.0)	20 (48.8)	0.41
Intervention accepted	14 (77.8)	18 (90.0)	0.30

Figure 3: Epidemiology of Pathogens Isolated From Respiratory Cultures in Cardiac Arrest Patients

Methicillin-susceptible Staphylococcus aureus Streptococcus pneumoniae Polymicrobial


Haemophilus influenzae


Methicillin-resistant Staphylococcus aureus

Enterobacteriaceae

Pseudomonas aeruginosa

Other

Table 3: Clinical Outco

Outcome

Hospital LOS, days ICU LOS, days In-hospital mortality, n (%) Number of ventilator-free c

Incidence of CDI, n (%)

Il numbers represented as median (IQR) unless otherwise stated. Abbreviations: CDI = *Clostridioides difficile* infection; ICU = intensive care unit; IQR = interquartile range; LOS = length of stay *hospital LOS, ICU LOS, and ventilator-free days analyses excluded patients who died prior to day seven and did not have therapy de-escalated

- Despite lack of indication for broad therapy, majority of patients received MRSA and *Pseudomonas aeruginosa* coverage
- Roughly 50% of patients started on empiric antimicrobial therapy had documented positive results, consistent with prior literature⁴ - Respiratory culture results were not associated with antibiotic de-escalation
- No difference in outcomes evaluated in de-escalated vs non-de-escalated patients - Aside from increased in-hospital mortality, which was likely attributed to other factors
- Observed high rates of MRSA de-escalation but low rates of de-escalation of unnecessary Pseudomonas aeruginosa coverage
- Targeting unnecessary antipseudomonal therapy in this patient population remains an area for further stewardship efforts

1. Kakavas S, Mongardon N, Cariou A, et al. Early-onset pneumonia after out-of-hospital cardiac arrest. J Infect. 2015;70(6):553-562 2. Perbet S, Mongardon N, Dumas F, et al. Early-onset pneumonia after cardiac arrest. Am J Respir Crit Care Med. 2011;184(9):1048-1054 3. Kwong JC, Howden BP, Charles PGP. New aspirations: the debate on aspiration pneumonia treatment guidelines. Med J Aust. 2011;195(7):380-

4. Lascarrou JB, Lissonde F, Le Thuaut A, et al. Antibiotic therapy in comatose mechanically ventilated patients following aspiration. Crit Care Med. 2017;45(8):1268-1275

5. Metlay JP, Waterer GW, Long AC, et al. Diagnosis and treatment of adults with community-acquired pneumonia. An official clinical practice guideline of the american thoracic society and infectious diseases society of america. Am J Respir Crit Care Med. 2019;200(7):e45-e67 6. American Thoracic Society; Infectious Diseases Society of America. Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med. 2005;171(4):388-416

Authors of this presentation have no financial or personal conflicts of interest.

Presenter Contact Information: Natasha Herzig, PharmD PGY-2 Internal Medicine Pharmacy Resident East Tennessee State University 1276 Gilbreath Dr, Johnson City, TN 37614 Email: Natasha.herzig@gmail.com Phone: 419-973-8800

omes*			
	De-escalation before day 7 (n = 60)	No de-escalation by day 7 (n = 26)	p-value
	11.8 (8.4-19.2)	13.4 (8.9-17.9)	0.76
	7.9 (5.6-10.5)	7.6 (4.4-13.2)	0.82
	20.0 (33.3)	16.0 (61.5)	0.03
days	4.9 (1.7-9.1)	5.7 (2.9-9.0)	0.79
	0 (0)	0 (0)	

Conclusions

References