

A Prospective, Stewardship-Driven IV to PO Antibiotic Conversion For Uncomplicated Bacteremia

Background

Recent data has shown a transition to oral (PO) antibiotics (ABX) for definitive treatment of uncomplicated bacteremia has similar efficacy compared to continuation of intravenous (IV) ABX, and reduces hospital length of stay (LOS)¹⁻³. The purpose of this study was to evaluate the safety and efficacy of an antimicrobial stewardship pharmacist-driven, IV to PO ABX transition in clinically stable patients with uncomplicated bacteremia, and to determine the impact on hospital LOS.

Study Design

- A prospective, interventional study with concurrent controls
- <u>Study period</u>: November 23rd 2019 April 15th 2020
- Statistical analyses: chi-squared for categorical data; ttest for continuous, parametric data; Mann-Whitney U test for continuous, non-parametric or ordinal data

Primary Outcomes of Interest

- 30-day composite clinical outcome: all-cause mortality, readmission due to infectious- or antibioticrelated complications, recurrent infection/bacteremia with the same organism recovered
- Overall hospital length of stay
- Hospital length of stay after definitive ABX regimen **established:** defined as the final change in ABX occurring prior to patients' discharge

Methods

- Positive blood cultures were reviewed Monday through Friday using TheraDoc[®]
- 2. Patients were evaluated to determine if inclusion and exclusion criteria were satisfied
- 3. If all study criteria were satisfied, the pharmacist contacted the patient's provider and made a recommendation to transition from IV to PO ABX
- . If the recommendation was accepted, patients were enrolled in the PO ABX group; if the recommendation was not accepted, patients were enrolled in the IV ABX group

Monomi

- Adequat day 5
- Pitt Bacte Toleratin
- day 5 At least available
- At least prescrib
- blood cu

N (%) fo

Me

Urinary

Adm

Hypotens

Pitt Bacter Me

Medical

46%

Asia Quan, PharmD; Gregory Marks, PharmD, BCPS; Hai Tran, PharmD, BCPS; Rita Shane, PharmD; Jonathan Grein, MD; Michael Ben-Aderet, MD; Fayyaz S. Sutterwala, MD, PhD; Jeffrey Rapp, MD; Ethan Smith, PharmD, BCIDP Cedars-Sinai Medical Center – Los Angeles, California

9%

7%

Table 1. Inclusion/Exclusion Criteria

Patient Characteristics

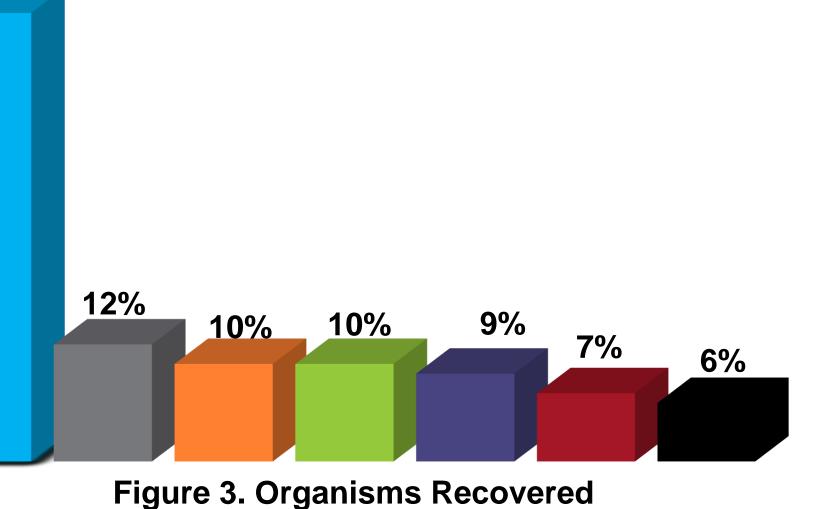
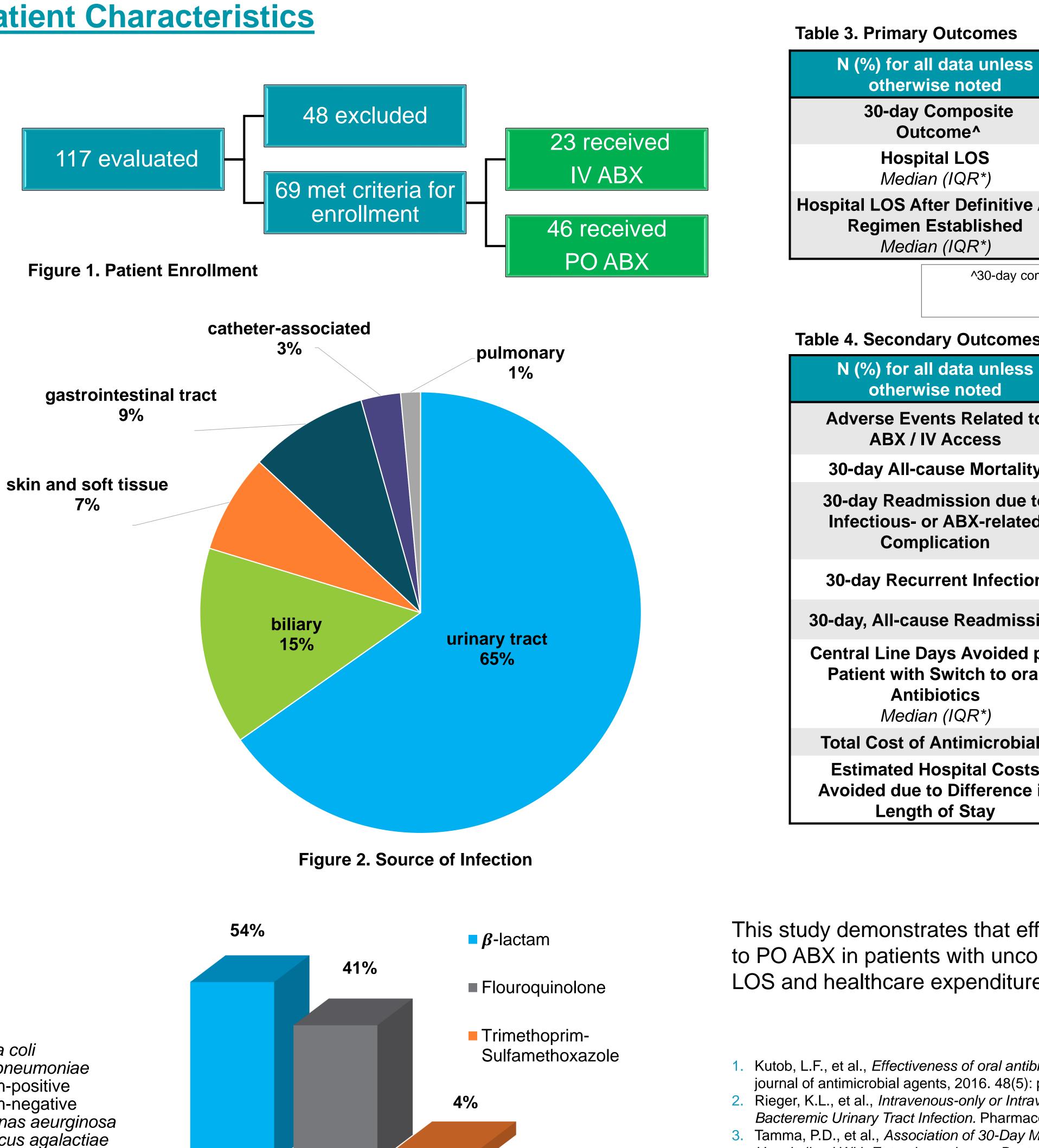

Inclusion Criteria	Exclusion Criteria	
icrobial bloodstream infection te source control achieved by	 Receipt of 2nd concomitant <i>in vitro</i> active antibiotic beyond day 5 Indication requiring > 14 days of 	117 evalua
teremia Score of ≤ 1 by day 5 ng enteral medications/food by 1 <i>in vitro</i> active oral antibiotic	 antibiotic therapy Blood culture (+) for Staphylococcus aureus, Coagulase-negative Staphylococci, Fungi, or other organisms documented as 	Figure 1 Detion
e 1 <i>in vitro</i> active antibiotic oed within 24 hours of index ulture	 ontaminants > 50% of index blood cultures (+) for Enterococci ANC < 1,000 cells/mm³ 	Figure 1. Patien

Table 2. Baseline Characteristics


or all data unless erwise noted	IV group (N=23)	PO group (N=46)	P-value
Female	11 (48)	25 (57)	> 0.05
Age edian (IQR*)	74 (68-78)	67 (53-82)	> 0.05
Tract as Source	9 (39)	36 (78)	0.01
nission to ICU	5 (22)	3 (7)	> 0.05
sive at Admission	4 (17)	15 (32)	< 0.00001
e remia Score Day 1 edian (IQR*)	1 (0-1)	1 (0-2)	> 0.05
I Comorbidities^	11 (48)	18 (39)	> 0.05

*IQR – Interguartile Range

^Medical Comorbidities – End-stage liver/kidney disease, structural lung disease, diabetes, HIV, congestive heart failure, solid organ transplant, or hematopoietic stem cell transplant within previous 12 months

- Escherichia coli Klebsiella pneumoniae Other Gram-positive Other Gram-negative
- Pseudomonas aeurginosa
- Streptococcus agalactiae
- Enterobacter cloacae

Figure 4. Oral Antibiotics Prescribed

mary Outcomes	Results		
for all data unless herwise noted	IV (N=23)	PO (N=46)	P-value
-day Composite Outcome^	1 (4)	1 (2)	0.61
Hospital LOS Median (IQR*)	8 (5.5-11.5)	5 (4-6)	0.0004
DS After Definitive ABX men Established <i>Median (IQR*)</i>	4 (3-6.5)	0 (0-1)	< 0.00001

^30-day composite outcome: all-cause mortality; readmission due to infectious- or antibiotic-related complications; recurrent infection/bacteremia with the same organism recovered *IQR- interquartile range

condary Outcomes			
for all data unless herwise noted	IV (N=23)	PO (N=46)	P-value
e Events Related to BX / IV Access	0	1 (2)	> 0.05
All-cause Mortality	0	0	
Readmission due to ous- or ABX-related Complication	1 (4)†	1 (2)^	> 0.05
Recurrent Infection	1 (4)	0	> 0.05
II-cause Readmission	2 (8)	3 (7)	> 0.05
ine Days Avoided per with Switch to oral Antibiotics Median (IQR*)	N/A	9 (8-11)	
ost of Antimicrobials	\$5,008.60	\$2,273.31	
ated Hospital Costs due to Difference in ength of Stay	N/A	\$486,400	

[†]infection with the same organism ^infection with different organism *IQR- interquartile range

Conclusions

This study demonstrates that effective pharmacist-driven intervention to transition from IV to PO ABX in patients with uncomplicated bacteremia has a significant impact on hospital LOS and healthcare expenditures, with similar clinical outcomes to continued IV therapy.

References

Kutob, L.F., et al., *Effectiveness of oral antibiotics for definitive therapy of Gram-negative bloodstream infections*. International journal of antimicrobial agents, 2016. 48(5): p. 498-503.

Rieger, K.L., et al., Intravenous-only or Intravenous Transitioned to Oral Antimicrobials for Enterobacteriaceae-Associated Bacteremic Urinary Tract Infection. Pharmacotherapy, 2017. 37(11): p. 1479-1483.

Tamma, P.D., et al., Association of 30-Day Mortality With Oral Step-Down vs Continued Intravenous Therapy in Patients Hospitalized With Enterobacteriaceae Bacteremia. JAMA internal medicine, 2019. 179(3): p. 316-323.