

Introduction

- Carbapenem-resistant *Enterobacterales* (CRE) is an urgent public health threat¹
- Urinary tract infections (UTIs), which include complicated UTIs (cUTIs) and acute pyelonephritis (AP), are the most common type of CRE infection encountered¹
- Limited treatment options exist:
- Historic agents: high-dose carbapenems, aminoglycosides (AGs), polymyxins, and tigecycline
- Novel beta-lactam beta-lactamase inhibitors (BL-BLIs): ceftazidime/avibactam (CZA) and meropenem/vaborbactam (MVB)
- Little data exists on the comparative efficacy or safety of CRE-targeted BL-BLIs versus alternative antibiotics for the treatment of CRE cUTI/AP^{2,3}
- It would be ideal to preserve CZA/MVB for more invasive infections in order to reduce utilization and subsequent development of resistance⁴

Objective

To evaluate clinical failure and tolerability in patients with CRE cUTI/AP treated with CREtargeted BL-BLIs (MVB or CZA) vs. alternative antibiotic regimens, as monotherapy or combination therapy.

Methods

This was a multicenter, retrospective cohort study of adults admitted with a CRE cUTI/AP treated with CRE-active antibiotic(s), including combination therapy, for at least 48 hours between January 2012 and June 2019.

Exclusion Criteria:

- Non-urinary source co-infection
- Non-*Enterobacterales* UTI
- CRE colonization of the urine
- Nitrofurantoin or fosfomycin as primary therapy
- Mortality within 48 hours of index culture

Primary Outcome:

► Clinical failure

Secondary Outcomes:

- ► 30- and 90-day recurrence
- ► 30-day hospital readmission
- ► 30-day mortality
- ► Length of hospital stay (LOS)
- ► Treatment-limiting adverse effects
- Non-treatment limiting acute kidney injury (AKI)
- ► C. difficile infection 90-days of index culture

Statistics:

- Categorical variables: Chi-square & Fishers exact tests
- Continuous variables: Student's t-test & Wilcoxon rank-sum tests
- Estimated clinical failure rate in the alternative group ~16%⁶
- Only 20% power to detect a difference in the rate of clinical failure between groups, with an equivalence margin of $\pm 10\%$ and a significance level of 0.05

Definitions

CRE: defined in accordance with the Centers for Disease Control and Prevention (CDC) definition¹

cUTI and AP: defined based on the US Food and Drug Administration (FDA) guidance⁵

Clinical failure: persistence, worsening or reappearance of clinical signs and symptoms of cUTI/AP or recurrence at 30 days from index culture

Recurrence: presence of a repeat urine culture with the original CRE isolate accompanied by signs and symptoms of cUTI/AP

Urologic complications: chronic

indwelling urinary catheter, ureteral stent(s), nephrostomy tube(s), neurogenic bladder, obstructive uropathy, ileal conduit

Novel Beta-lactam Beta-lactamase Inhibitors Against Alternative Antibiotics for the Treatment of **Complicated Urinary Tract Infections and Pyelonephritis Caused by Carbapenem-resistant** *Enterobacterales*

Bliss Green, PharmD^a, Jacqueline Meredith, PharmD, BCPS, BCIDP^a, Renee Ackley, PharmD, BCPS^a, Maggie McCarter, MSPH^b, Christopher Polk, MD^c

^aDepartment of Pharmacy, Atrium Health, Charlotte, NC; ^bCenter for Outcomes Research and Evaluation, Charlotte, NC; ^cDepartment of Internal Medicine, Division of Infectious Diseases, Atrium Health, Charlotte, NC; ^bCenter for Outcomes Research and Evaluation, Charlotte, NC;

Table 1: Baseline Characteristics

	BL-BLI	Alternative
	(n=16)	(n=31)
Male sex [n (%)]	4 (25.0)	12 (38.7)
Age (years) (median [IQR])	64.0 [50.0,74.0]	67.0 [52.0,76.0]
Past CRE infection/colonization [n (%)]	6 (37.5)	11 (35.5)
Urologic complications [n (%)]	9 (56.3)	18 (58.1)
ICU admission during treatment [n (%)]	5 (31.3)	6 (19.4)
Comorbidities		
Charlson Comorbidity Index (median [IQR])	4.0 [3.0,5.0]	4.0 [2.0,6.0]
Chronic kidney disease [n (%)]	3 (18.8)	11 (35.5)
Cirrhosis [n (%)]	4 (25.0)	3 (9.7)
Malignancy [n (%)]	2 (12.5)	4 (12.9)
Diabetes mellitus [n (%)]	6 (37.5)	11 (35.5)
CRE urine isolates		
Klebsiella pneumoniae	13 (81.3)	27 (87.1)

Results

Table 2: Outcomes				
Efficacy Outcomes	BL-BLI (n=16)	Alternative (n=31)	p-value	
Clinical failure [n (%)]	2 (12.5)	12 (38.7)	0.063	
30-day recurrence [n (%)]	1 (50)	3 (25)		
Persistent symptoms [n (%)]	1 (50)	9 (75)		
90-day recurrence [n (%)]	3 (18.8)	8 (25.8)	0.59	
30-day readmission [n (%)]	5 (31.3)	16 (51.6)	0.18	
Infection-related	0 (0.0)	8 (53.3)	0.055	
30-day all-cause mortality [n (%)]	1 (6.3)	2 (6.5)	0.99	
LOS (days) (median [IQR])	12.5 [7.5,17]	11.0 [7.0,19.0]	NS	
Safety Outcomes				
Treatment-limiting adverse effect [(%)]	n 0 (0.0)	9 (29.0)	0.017	
Non-treatment limiting AKI [n (%)]	3 (18.8)	6 (19.4)	0.96	

Figure 3: Efficacy Outcomes

1 (6.3)

2 (6.5)

0.99

C. difficile infection [n (%)]

BL-BLI (n=16) Alternative (n=31)

Outcomes

Figure 4: Treatment-Limiting Adverse Effects

Strengths	Limitations		
 Multicenter design Large sample size for a study on CRE cUTI/AP 	 Retrospective design Not adequately powered Did not assess antibiotic 		
 First study of its kind in CRE cUTI/AP, comparing novel agents to historic regimens specifically 	 dosing or therapeutic-drug monitoring Practice changes throughout study period: CRE definitions, breakpoint data, CRE mechanism testing 		
Conclusions & Future Directions			

1)	Cente
2)	Wund
3)	Morr
4)	Shield
5)	U.S. [
	Comp
6)	Igbind

Discussion

• No difference in efficacy outcomes resulted between treatment groups, but this study was underpowered

Patients in the alternative group did numerically worse in all study outcomes • High utilization of suboptimal monotherapy regimens likely contributed

- 63% (n=5) treated with tigecycline monotherapy failed

- 67% (n=2) treated with a polymyxin monotherapy failed

• Significant difference found in treatment-emergent adverse effects, largely driven by nephrotoxicity in the alternative group

- Polymyxins accounted for ~63% (n=5) of all treatment-limiting nephrotoxicity - AGs accounted for 25% (n=2) of treatment-limiting nephrotoxicity

BL-BLI group consisted of predominately CZA and performed similar to MVB in the TANGO II subgroup analysis⁴

BL-BLIs resulted in zero treatment-limiting adverse effects and there were no cases of acquired resistance on repeat urine culture

In this retrospective study, no difference in clinical failure resulted among groups Significantly more treatment-limiting adverse effects occurred in the alternative group compared to the BL-BLI group, driven by nephrotoxicity

• Larger studies, including more aminoglycoside-based regimens, with or without high-dose carbapenems, would be of greater utility in making comparisons amongst agents and subsequent treatment recommendations

Resources

ers for Disease Control and Prevention (CDC). Antibiotic Resistance Threats in the US, 2013. Updated April 10, 2017 derink RG, Giamarellos-Bourboulis EJ, Rahav G, et al. *Infect Dis Ther*. 2018;7(4):439-455.

ill HJ, Pogue JM, Kaye KS, LaPlante KL. Open Forum Infect Dis. 2015;2(2):ofv050. ds RK, Chen L, Cheng S, et al. Antimicrob Agents Chemother. 2017;61:e02097-16.

Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research.

plicated Urinary Tract Infections: Developing Drugs for Treatment; Guidance for Industry. June 2018 . osa O, Dogho P, Osadiaye N. Am J Infect Control. 2020;48(1):7-12.

Contact Info

Bliss Green, PharmD

Department of Pharmacy, Atrium Health's Carolinas Medical Center 1000 Blythe Blvd, Charlotte, NC 28203

elizabeth.green@atriumhealth.org | Office: 704-381-7040

Acknowledgements