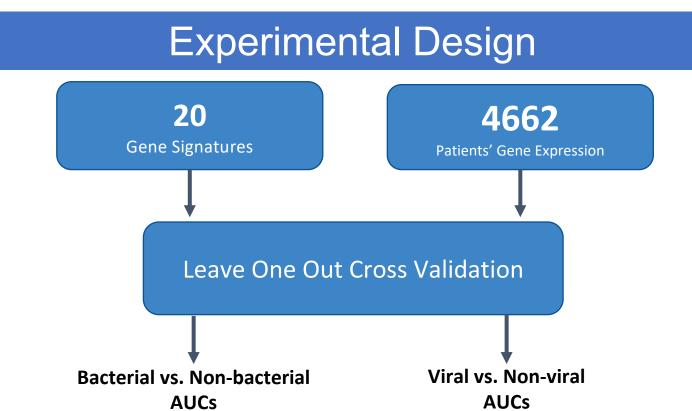
Benchmarking Published Gene Expression Signatures for Infection Classification

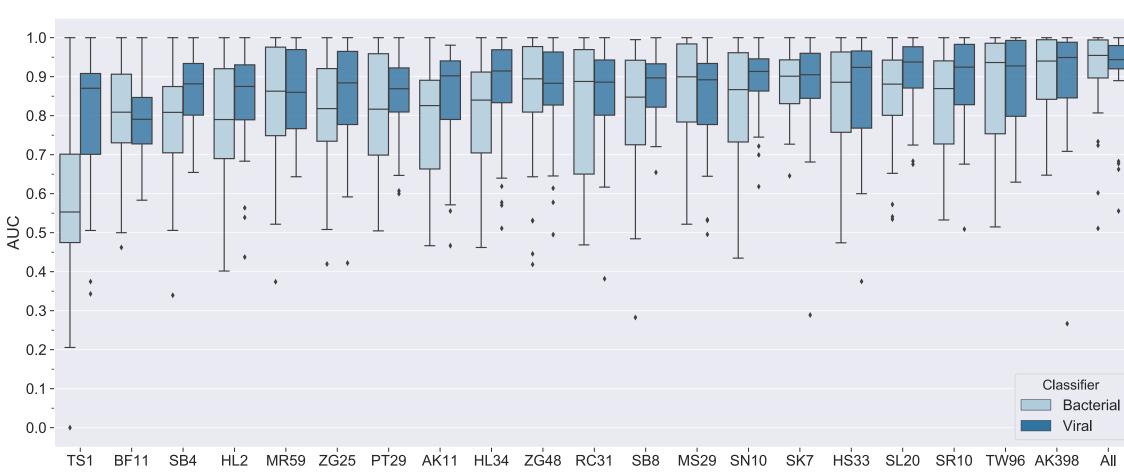
Duke University School of Medicine

Motivation & Objective

Host gene expression has emerged as a promising diagnostic strategy to discriminate bacterial and viral infection. Multiple gene signatures of varying size and complexity have been developed in various clinical populations. However, there has been no systematic comparison of these signatures. It is also unclear how these signatures apply to different clinical populations.

This meta-analysis examined 20 published signatures, validated in 49 publicly available datasets for a total of 4662 patients. The objectives were to understand how the signatures compared to each other with respect to composition and performance, and to evaluate their performance in different patient subgroups.





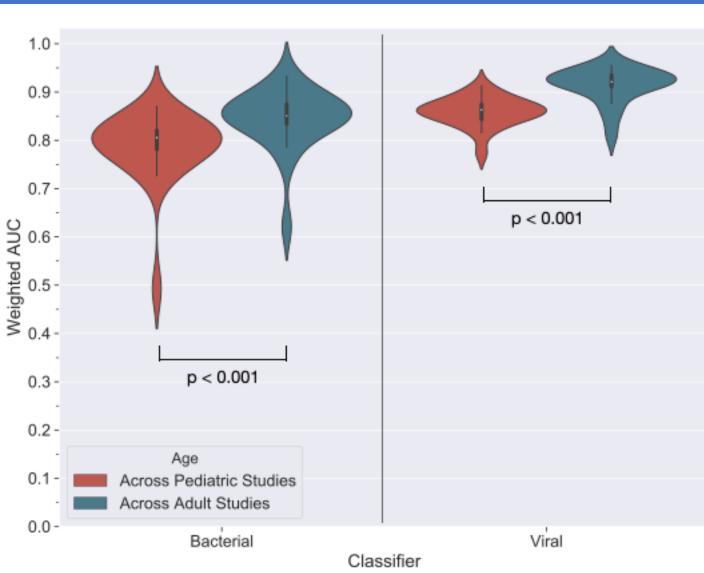
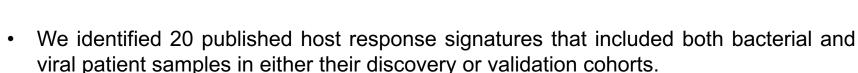


Figure 2: Distribution of weighted average AUCs for each signature as measured in datasets with either pediatric (red) or adult (blue) subjects, as measured for bacterial classification (left) or viral classification (right).

While analyzing the results at the dataset-level, we noticed that across all signatures, datasets comprised of only pediatric patients had lower AUCs than datasets with only adult patients. This significant finding was present in both bacterial and viral classification.

We then applied thresholds, assigned accuracies, and pooled patients to explore differential performance in more heterogenous datasets. Through this analysis, we found differences in overall signature performance between identified pathogens, more granular age categories, and infection severity.



- We then curated a standardized validation cohort that consisted of 49 publicly available datasets with 4662 samples that met the following criteria:
- Dataset included at least one infection phenotype (bacterial or viral) and at least one other phenotype (bacterial, viral, healthy, or non-infectious illness), as defined by the data contributor
- Minimum of 10 total samples and 10% infected cases
- Data was generated using either whole blood or PBMCs
- Gene expression was measured using a commercial microarray or RNA-seq platform

Methods

Signatures were characterized with respect to size, platform, and discovery population. Genes in each signature were mapped to Ensemble Gene IDs, where duplicates and those without an ID were removed. Subjects with repeated measurements were excluded.

Samples in each validation dataset were annotated with the patient's adjudicated infection phenotype, identified pathogen, age group, and infection severity (as assessed by ICU admission).

AUCs were generated for each signature's ability to classify bacterial vs. non-bacterial and viral vs. non-viral classification in each validation dataset. Classification was determined by nested leave-one-out cross validation in Scikit Learn with LASSO.

We applied dataset-specific thresholds (Youden index) to generate signature accuracies. This allowed us to pool patients across datasets and assess performance in patient subpopulations.

We created a composite signature ("All") from the union of all other signatures.

Nicholas Bodkin¹, Melissa Ross², Ricardo Henao², Ephraim L. Tsalik^{2,3}

¹Trinity College, Duke University, Durham, NC, USA ²Duke University School of Medicine, Durham, NC, USA ³Durham Veterans Affairs Health Care System, Durham, NC, USA

Overall Signature Performance

Figure 1: Distribution of AUCs for each signature's classification of bacterial and viral patients across 49 datasets

Median AUCs ranged from:

- Bacterial classification: 0.55-0.94
- Viral classification: 0.79-0.96

Signature size varied (1-398 genes) and smaller signatures generally performed more poorly.

• Bacterial: R = 0.66, P < .001

• Viral: R = 0.45, P = 0.02

Viral infection was easier to classify than bacterial infection

- 85% vs. 80% overall accuracy
- P < .001

Signature

Differential Performance in Certain Populations

	Bactorial	vs. non-Bac	torial	Viral vs. non-Viral			
Parameter 2	Accuracy	p-value	N	Accuracy	p-value	N	
All subjects	80 [79-81]	-	2952	85 [84-86]	-	3584	
Pathogen class							
All Bacterial*	80 [78-82]	-	1030	-	-	-	
S. aureus	74 [70-79]	< 0.001	184	-	-	-	
E. coli	85 [80-90]	0.210	64	-	-	-	
All Viral*	-	-	-	83 [81-84]	-	1679	
Rhinovirus	-	-	-	74 [70-78]	< 0.001	179	
RSV	-	-	-	82 [80-84]	0.119	406	
Influenza	-	-	-	90 [88-92]	< 0.001	431	
Age							
Adult*	83 [81-85]	-	1183	89 [87-90]	-	1268	
12-18 years	82 [78-85]	0.087	144	90 [86-94]	0.6	95	
2-11 years	70 [67-73]	< 0.001	412	80 [77-83]	< 0.001	352	
3 mo - 1 year	73 [69-77]	< 0.001	195	80 [78-83]	< 0.001	576	
<3 months	85 [82-88]	0.056	322	82 [80-85]	< 0.001	547	
Severity							
non-ICU*	63 [58-68]	-	99	85 [81-89]	-	117	
ICU	71 [67-75]	0.002	191	87 [83-91]	0.493	107	

Table 1: Overall accuracies (with 95% CI and p-value) of bacterial and viral classification, separated by different patient populations. N is equal to the number of patients validated in the classifier that were annotated with the specific parameter.

* = Reference category used for p-value calculations

Additional Findings

Gene Importance:

- The five most common genes in the 20 signatures and the frequency with which they were included are: IFI27 (63%), OASL (44%), RSAD2 (38%), ISG15 (38%), and LY6E (38%)
- The most discriminating genes across all signatures were:
- Bacterial classification: CEPT (+), ANKRD20A11P (-), IFI27 (-), RPGRIP1 (-), PDE9A (-)
- Viral classification: IFI27 (+), FCER1A (-), XAF1(+), OTOF (+), LARP1 (+)

Sample Type:

- Signatures performed better on Whole Blood samples compared to PBMCs
- Bacterial classification: 0.84 vs. 0.70 median weighted average AUC, P < 0.001
- Viral classification: 0.89 vs. 0.82 median weighted average AUC, P = 0.016

Binary Classification:

- Classifying 2 groups (e.g., bacterial or viral) was easier than classifying >2 groups (e.g., bacterial, viral, or SIRS)
- Bacterial classification: 0.87 vs. 0.82 median weighted average AUC, P = 0.002
- Viral classification: 0.91 vs. 0.86 median weighted average AUC, *P* = 0.016

COVID-19:

- Strong signature performance generalized to datasets that include COVID-19 patients
- Median weighted average AUC for viral classification: 0.86
- Signatures can accurately differentiate between COVID-19 and other viral infections
- Median weighted average AUC for COVID-19 classification: 0.83

Conclusions

We observed significant differences among gene expression signatures for bacterial and viral discrimination, though these were not due to variations in the discovery methods or populations. The number of unique genes in a signature directly correlated with test performance.

Across all signatures, performance varied significantly among different age groups, pathogen class, and infection severity. Future clinical validation of host gene expression classifiers must take such population differences into account.

Our analysis was limited by the breadth of sample annotations in GEO and ArrayExpress. There may be additional characteristics imparting differences in signature performance that we could not explore due to limitations in the availability of such data.

References

Signatures were named using the initials of the first and last author followed by number of unique genes in the signature.

Abbrv	First Author	Last Author	PubMed ID	Abbrv	First Author	Last Author	PubMed ID
TS1	Tang	Schughart	28619954	ZG25	Zaas	Ginsburg	19664979
HL2	Herberg	Levin	27552617	PT29	Parnell	Tang	22898401
SB4	Sampson	Brandon	28588308	MS29	Mayhew	Sweeney	32132525
SK7	Sweeney	Khatri	27384347	RC31	Ramilo	Chaussabel	17105821
SB8	Sampson	Brandon	28588308	HS33	Hu	Storch	23858444
SR10	Suarez	Ramilo	25637350	HL34	Herberg	Levin	27552617
SN10	Sampson	Noursadeghi	32690014	ZG48	Zaas	Ginsburg	24048524
BF11	Bhattacharya	Falsey	28747714	MR59	Mahajan	Ramilo	27552618
AK11	Andres-Terre	Khatri	26682989	TW96	Tsalik	Woods	26791949
SL20	Song	Lei	28771541	AK398	Andres-Terre	Khatri	26682989
5120	30118		20771341	All	-	-	-

Acknowledgments:

I'd first like to thank my research mentor, Dr. Ephraim Tsalik, for his support and guidance over the past year. I'd also like to thank Dr. Ricardo Henao who helped us immensely with the machine learning and statistical analyses.