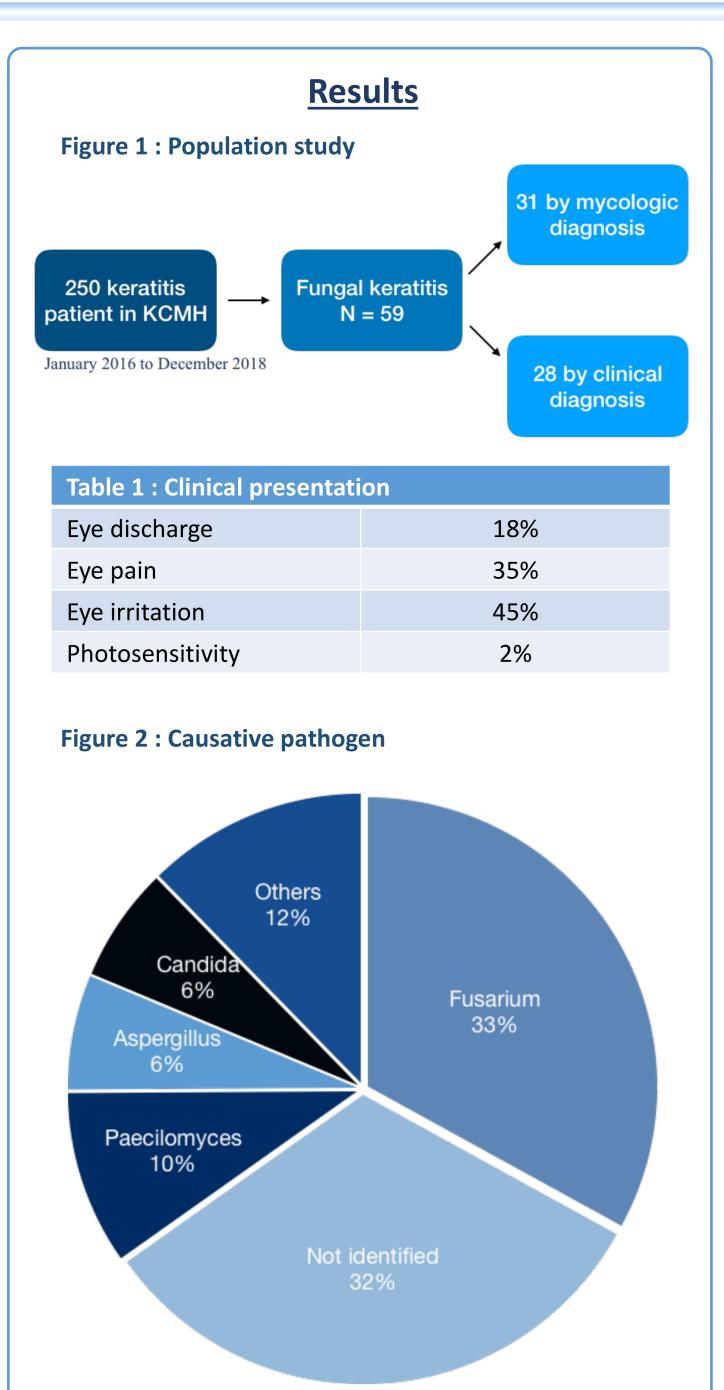
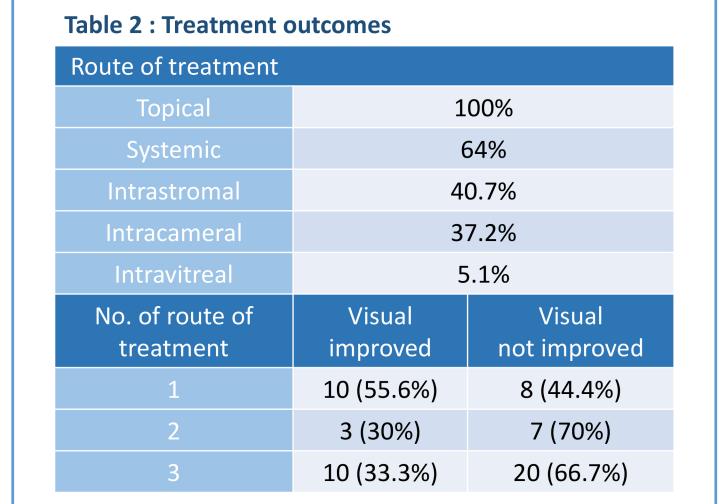


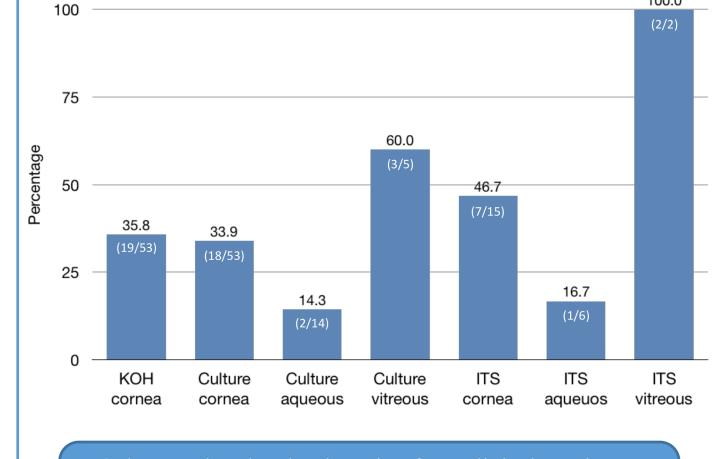
Epidemiology, management and outcomes of fungal keratitis: A single center study from tertiary hospital in Thailand

Thitiwat Puttiteerachot¹, Jakapat Vanichanan², Kamonwan Jutivorakool² Vilavun Puangsricharern³, Ngamjit Kasetsuwan³, Usanee Reinprayoon³, Thanachaporn Kittipibul³, Vannarut Satitpitakul³


¹ Faculty of Medicine, Chulalongkorn University ² Division of Infectious Diseases, Department of Medicine, King Chulalongkorn Memorial Hospital,
Thai Red Cross Society ³ Center of Excellence for cornea and stem cell transplantation, Department of Ophthalmology, King Chulalongkorn Memorial Hospital, Bangkok, Thailand


Background

- Fungal keratitis is known as an important cause of sight threatening infection worldwide.
- Variation of clinical characteristics and treatment have been observed among different geographic regions.
- Early diagnosis and management are essential to prevent irreversible sequelae including blindness.
- Broad-spectrum treatment should be administered once there is a strong probability of a mycotic infection
- Currently, clinical data of fungal keratitis in South East Asia remain scarce.


Material and Methods

- Primary objective : To identify the causative fungi of fungal keratitis patient in KCMH
- Secondary objective: To evaluate diagnostic yield and outcomes of fungal keratitis patient in KCMH
- Case Control study
- Population: Patient with diagnosis of fungal keratitis between January 2016 and December 2018
- Cases: ICD-10 code

Culture and molecular detection from clinical specimens provided additional mycological diagnosis in 8 and 5 cases with negative KOH preparation.

• Both culture and molecular detection were used in 22 cases. The concordance between culture and molecular detection is 77.2%

Table 3 : Operation performed	
Evisceration	28.5%
Keratoplasty	71.4%
Vitrectomy	20%

Table 4: Clinical characteristics and outcomes between mycological diagnosis and clinical diagnosis

, ,	<u> </u>	0
	Mycological diagnosis (N=31)	Clinical diagnosis (N=28)
Median onset (IQR)	16.9 (7-21)	52.3 (8.75-34.25)
Uveal involvement (%)	9 (29)	11 (39.2)
Surgery required (%)	12 (38.7)	9 (32.1)
Visual improvement (%)	7 (22.5)	11 (39.2)

No statistical significant between two groups.

CONCLUSIONS

- Fusarium was the most common etiologic agent similar to study from other region
- Appropriate fungal culture and molecular detection from clinical specimens should be considered as they may increase diagnostic yield

REFERENCE

- Wykoff C, Flynn H, Miller D, Scott I, Alfonso E. Exogenous Fungal Endophthalmitis: Microbiology and Clinical Outcomes. Ophthalmology. 2008;115(9):1501-1507.e2.
- Henry C, Flynn H, Miller D, Forster R, Alfonso E. Infectious Keratitis Progressing to Endophthalmitis. Ophthalmology. 2012;119(12):2443-2449.
- Kim D, Moon H, Joe S, Kim J, Yoon Y, Lee J. Recent Clinical Manifestation and Prognosis of Fungal Endophthalmitis: A 7-Year Experience at a Tertiary Referral Center in Korea. Journal of Korean Medical Science. 2015;30(7):960.