Resistance Mechanisms of Tigecycline in Enterococcus faecalis

Bing Bai, MD^{1,2}; Zewen Wen, PhD¹; Zhiwei Lin, PhD¹; Vincent H Tam, Pharm.D²; Zhijian Yu, MD, PhD^{1,2}; 1 Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, The 6th Affiliated Hospital of Shenzhen University Health Center, Shenzhen, China, 2 Department of Pharmacy Practice and Translational Research, University of Houston, Houston, USA

Background

Enterococcus faecalis have been regarded as one of the leading causes of the nosocomial infections worldwide. Tigecycline (TGC) is considered as a choice of last resort for the treatment of infections caused by multidrug-resistant E. faecalis, however, the emergence of TGC non-susceptibility has posted the therapeutic challenge. Nonsusceptibility in clinical strains could be due to resistance (MIC>0.5) mg/l) or heteroresistance. Therefore, this study aimed to understand the underlying molecular mechanisms of TGC resistance and heteroresistance in *E. faecalis*.

Methods

In vitro induction experiments were carried out under TGC pressure with two TGC- sensitive *E. faecalis* strains. Heteroresistance was evaluated by population analysis profiling (PAP) in 270 clinical TGC- sensitive *E. faecalis* strains. TGC susceptibility was determined by the agar dilution method. Resistance and heteroresistance mechanisms were investigated by identifying genetic mutations in tetracycline (Tet) target sites and susceptibility testing in the presence of the efflux protein inhibitors phenylalanine-arginine-β-naphthylamide (PaβN) and carbonyl cyanide m chlorophenylhydrazine (CCCP). Comparison of single nucleotide polymorphism in the whole genome between the parental isolate and two TGC-resistant strains were investigated by next-generation sequencing.

No mutations in Tet target sites in seven TGC heteroresistant strains were present, whereas the mutations in Tet target sites of seven TGC-resistant *E. faecalis* were frequently found (Table 1). TGC MICs in heteroresistant strains were reduced by CCCP (Table 2). Whole genome sequencing revealed the same non-synonymous mutations and transcoding deletions in the exons of several genes encoding for various enzymes or transfer systems (Table 3).

NO.	MIC (mg/L)	Mutation in the individual copies of 16S				30S ribsome _ protein	30S ribsome protein	NO.	TGC MIC (mg/L)	NO.	TGC MIC (mg/L)	TGC+CCCP	TGC+PABN
								EF16C186	0.0625	Tig0.5-EF16C186-1	2	<=0.06	2
		RR1	RR2	RR3	RR4	S30				Tig0.5-EF16C186-2	2	<=0.06	2
Deng	0.03125	W	W	W	W	W	W	NEFA53	0.125	Tig0.5-NEFA53-1	1	<=0.06	2
Deng-T4-	2	A927G	w	W	W	w	Ala54Glu			Tig0.5-NEFA53-2	1	<=0.06	2
5 Deng		A9311						NEFA5	0.25	Tig0.5-NEFA5-1	2	<=0.06	2
T10-3	2	W	W	W	G771C	Arg155Ser	Ala54Glu, His56Asn			Tig0.5-NEFA5-2	2	<=0.06	2
Deng-	16	C945T	W	w	W	Arg155Ser	Ala54Glu, His56Asn	NEFA37	0.25	Tig0.5-NEFA37-1	2	<=0.06	2
T60-3										Tig0.5-NEFA37-2	2	<=0.06	2
F4	0.0625	W	W	W	W	W	W	NEFA26	0.5	Tig0.5-NEFA26-1	2	<=0.06	2
F4-T2-1	8	W	W	W	W	W	Del52IRATH56			Tig0.5-NEFA26-2	2	<=0.06	2
F4-T4-1	16	W	W	W	w	W	Del52IRATH56	NEFA27	0.5	Tig0.5-NEFA27-1	2	<=0.06	1
F4-T10-1	16	w	W	G9741T G771C	W	W	Del52IRATH56			Tig0.5-NEFA27-2	2	<=0.06	1
								NEFA32	0.5	Tig0.5-NEFA32-1	2	<=0.06	2
F4-T30-1	32	W	W	W	W	Arg155Cys	Del52IRATH56			Tig0.5-NEFA32-2	2	<=0.06	2

Table 1. The characteristics of the antimicrobial susceptibility, resistance mechanism of TGC-induced resistant isolates

Results

Table 2. Characteristics of clinical heteroresistant mother E. faecalis strains and heteroresistancederived E. faecalis clones.

Contact Information: Bing Bai Mailing address: University of Houston College of Pharmacy 4849 Calhoun Road Houston, TX 77204 E-mail: 568646535@qq.com Tel: 7022095371

Table 3. Mutation-related genes, amino acids and proteins

New Area to	Locus name	•	Amino acid		
Name of proteins	Deng	Gene	ZHOU-T10-3	ZH	
Non-synonymous SNP					
Hypothetical protein	Deng_159		A54E H56N		
Amidase	Deng_487		E926D D929E		
Ferrichrome ABC transporter, ATP- binding protein	Deng_166		R155S		
Glycosyl transferase, group 2 family protein	Deng_2227				
Synonymous SNP					
Excinuclease ABC, subunit A	Deng_816	uvrA	G261G		
Menaquinone-specific isochorismate synthase, putative	Deng_433	menF	G32G		
Tunicamycin resistance protein	Deng_1190		A446A, T438T, L437L, P428P, Y422Y,E421E, G32G, G419G, N399N, S355N	A446A P428P G32G,	
Gene deletion					
Glutamyl-tRNA synthase	Deng_44	gltX1	267_268del	26	

Conclusion

Our data indicated that the main mechanism of TGC heteroresistance in *E. faecalis* might be associated with the efflux pumps. TGC resistance in *E. faecalis* was associated with mutations

in the 16SrRNA site or 30S ribosome protein S10. The genetic mutations in several enzymes and transfer systems might also participate in the resistance development to TGC in *E. faecalis*.

OU-T60-1

A548 H56N

E926D D929E

R155S

E113G

G261G

G32G

, T438T, L437L , Y422Y,E421E, G419G, A400A, N399N