Using natural language processing to optimize case ascertainment of acute otitis media in a large, state-wide pediatric practice network Joshua C Herigon MD, MPH, MBI¹, Amir Kimia, MD¹, Marvin Harper, MD¹

¹Boston Children's Hospital & Harvard Medical School, Boston, MA

BACKGROUND

- To help address inappropriate antibiotic prescribing, the CDC has included "audit with feedback" as a core component of outpatient antibiotic stewardship
- Previous research employing "audit with feedback" in outpatient settings relied on diagnosis codes provided by prescribers to categorize antibiotic use and appropriateness
- Diagnosis codes may be inaccurate due to:
- Human error
- Lack of awareness of proper coding
- Diagnosis shifting to justify a prescription
- Natural language processing can analyze free text to extract specific semantic concepts or classify text
- Using natural language processing, we sought to identify cases of acute otitis media (AOM) based on clinical documentation

METHODS

Study Design: cross-sectional retrospective chart review Setting/Population

- 80+ independently-owned pediatric practices affiliated with Boston Children's Hospital, includes 400+ clinicians taking care of > 400,000 children
- Patients < 5 years old</p>
- Encounters July 1, 2018 June 30,2019
- Problem-focused, in-person visits only
- 12 randomly selected weekdays (one/month) plus an additional random weekday in Jan 2019 for validation
- Complete note text and limited structured data extracted

Manual Labeling

- Key physical exam descriptors (see table) defined based on the AAP AOM guideline
- Notes were human reviewed and manually labeled as "AOM present" or "AOM absent" based on the presence or absence of these descriptors

Term	Examples of		
bulging	bulge, pus fil obscured lan		
purulence	pus, opaque thick fluid, st		
erythema ^a	red, injected, vessels visib		
effusion ^b	dull, no light serous fluid,		
otorrhea ^c	drainage, TM canal		

^aMust be combined with an indication for bulging or purulence ^bMust be combined with an indication for erythema [°]Not due to otitis externa

Acknowledgements

Corresponding Author Joshua Herigon MD, MPH, MBI joshua.herigon@childrens.harvard.edu www.joshherigon.com

Joshua Herigon was supported by a National Library of Medicine Biomedical Informatics and Data Science Research Training Grant (T15LM007092)

Natural Language Processing (NLP)

- A supervised machine learning model (support vector machine or SVM) using ngrams trained to automatically identify positive and negative instances
- SVM produces a score, with higher scores more likely to be positive
- Two different cutoffs of SVM values were employed
- First cutoff balanced sensitivity and specificity to optimize the NLP model alone Second cutoff chosen automatically by multivariate recursive partitioning model

Recursive partitioning (RP) model

- Form of multivariate analysis employing decision trees The RP model was created by combining NLP results optimized for specificity
- with structured data
- Multiple candidate RP models were then created and tuned using the training cohort data to optimize sensitivity before a final model was chosen

dmarks. full

RESULTS

Fig 1. Details of encounters included in the training and validation cohorts

Statistical Analysis

Human review considered the "gold standard" 3 methods compared against human review Sensitivity, specificity, positive and negative predictive value (with 95% confidence intervals) was calculated for each

Table 1. Cohort characteristics

Patient characteristics

Age, median months (IC Female gender (%) Complex chronic conditi Visit characteristics Chief complaint (%)^b Fever Cough Ear problem Follow-up Rash AOM diagnosis (%)

Fig 2. Details of the decision tree produced by the recursive partitioning model with performance at each decision node using the training cohort

*All proportions are for AOM present by manual review

	Training	Validation	All Encounters	
	(N = 2,724)	(<i>N</i> = 793)	(N = 3,517)	P-value
QR ^a)	25 (14, 40)	26 (15, 42)	25 (14, 40.5)	0.056
	1,213 (44.5)	348 (43.9)	1,561 (44.4)	0.747
ions (%)	270 (9.9)	84 (10.6)	354 (10.1)	0.575
	471 (17.3)	165 (20.8)	636 (18.1)	<0.001
	454 (16.7)	180 (22.7)	634 (18.0)	
	440 (16.2)	101 (12.7)	541 (15.4)	
	279 (10.2)	68 (8.6)	347 (9.9)	
	185 (6.8)	37 (4.7)	222 (6.3)	
	1,068 (39.2)	194 (24.5)	1,262 (35.9)	<0.001

Table 2. Performance comparison of all 3 methods

sitivity		Positive Predictive Value		S	Specificity		Negative Predictive Value				
%	(95% CI)	Estimate	%	(95% CI)	Estimate	%	(95% CI)	Estimate	%	(95% CI)	
91.2	(89.2, 92.9)	903/1068	84.6	(82.2, 86.6)	1569/1734	90.5	(89.0, 91.8)	1569/1656	94.7	(93.5, 95.7)	
93.1	(91.3, 94.6)	922/1035	89.1	(87.0, 90.9)	1621/1734	93.5	(92.2, 94.6)	1621/1689	96.0	(94.9, 96.8)	
97.2	(95.9, 98.1)	962/1279	75.2	(72.7, 77.5)	1417/1734	81.7	(79.8, 83.5)	1417/1445	98.1	(97.2, 98.7)	
38.2	(82.5, 92.3)	165/194	85.0	(79.1, 89.6)	577/606	95.2	(93.1, 96.7)	577/599	96.3	(94.4, 97.6)	
33.4	(77.1, 88.3)	156/184	84.8	(78.6, 89.5)	578/606	95.4	(93.3, 96.9)	578/609	94.9	(92.3, 96.5)	
94.1	(89.4, 96.9)	176/236	74.6	(68.4, 79.9)	546/606	90.1	(87.4, 92.3)	546/557	98.0	(96.4, 99.0)	

CONCLUSIONS

Natural language processing of outpatient pediatric visit documentation can be used successfully to create models accurately identifying cases of AOM based on clinical documentation. Combining NLP and structured data improves automated case detection. These techniques may be valuable in optimizing outpatient antimicrobial stewardship efforts.