DESCRIPTION OF HOSPITALIZED PATIENTS WITH INFLUENZA VACCINE FAILURE

JKIMBALL2@KUMC.EDU

BACKGROUND

- Despite influenza vaccination, some patients develop illness and require hospitalization.
- Many factors contribute to vaccine failure:
 - Mismatch of the vaccine and circulating strains
 - Timing of influenza season
 - Waning immunity
 - Age
 - Patient comorbidities such as immune function

METHODS

- 2015-2019 Tennessee data from the US Hospitalized Adult Influenza Vaccine Effectiveness Network database.
- Enrolled patients were \geq 18 years, vaccinated for the current influenza season and admitted with an acute respiratory illness.
- Patient or surrogate interviews and medical chart abstractions were performed.
- Influenza vaccinations were confirmed by vaccine providers.
- Influenza PCR testing was performed in a research lab.
- Statistical analyses were performed with STATA and R using Pearson's chi-squared, Kruskal-Wallis and Wilcoxon rank-sum tests and multivariate logistic regression.

FIGURE 1: DEMOGRAPHICS										
N = 1236	Influenza positive (N=235)	Influenza negative (N=1001)	p-value							
Median age – years (25th-75th %)	66 (57, 78)	65 (52, 74)	0.02							
Gender – no. (%)			0.20							
Male	98 (42%)	464 (46%)								
Female	137 (58%)	537 (54%)								
Race – no. (%)			0.43							
African-American	53 (23%)	218 (22%)								
Asian	0	7 (1%)								
White	182 (77%)	767 (77%)								
Other	0	4 (0%)								
Pregnant at time of enrollment	0	9 (0.9%)	0.15							
Self-reported being vaccinated for	144 (61%)	576 (58%)	0.19							
current influenza season – no. (%)										
Vaccine type – no. (%)			0.21							
Standard (trivalent, quadrivalent,	135 (59%)	625 (63%)								
recombinant, cell culture)										
High-dose and adjuvanted	94 (41%)	360 (37%)								
Median time between vaccine and	120 (93, 146)	114 (77, 150)	0.36							
symptom onset date – days										
Any immunosuppression	147 (63%)	537 (54%)	0.01							
Smoking (including vaping) in past 6	58 (25%)	261 (26%)	0.72							
mo.			0.45							
Home O2 use prior to admission	48 (44%)	201 (36%)	0.15							
Cancer (Including hematologic)	33 (14%)	150 (15%)	0.65							
Heart disease	133 (57%)	564 (56%)	0.94							
Lung disease	121 (51%)	595 (59%)	0.07							
Kidney disease (including HD)	74 (31%)	285 (28%)	0.59							
Diabetes mellitus	86 (37%)	374 (37%)	0.83							
Liver disease	19 (8%)	68 (7%)	0.70							
Morbid obesity	17 (8%)	113 (13%)	0.04							

Figure 1: Demographics of influenza positive versus influenza negative patients in influenza vaccinated, hospitalized patients.

JOANNA KIMBALL, MD^{1,2}, YUWEI ZHU, MD, MS¹, DAYNA WYATT, RN¹, H. KEIPP TALBOT, MD, MPH¹

¹VANDERBILT UNIVERSITY MEDICAL CENTER, NASHVILLE, TN ² UNIVERSITY OF KANSAS MEDICAL CENTER, KANSAS CITY, KS

	All influenza positive		H1N1 positive		H3N2 positive		Self-reported vaccinated patients			
Variable	Odds Ratio	95% CI	Odds Ratio	95% CI	Odds Ratio	95% CI	Odds Ratio	95% CI		
Age (40-65)	1.47	1.03-2.10	1.50	0.62-3.60	1.24	0.80-1.91	1.66	1.16-2.39		
Female: male	1.21	0.90-1.64	1.61	0.85-3.04	1.13	0.77-1.65	1.11	0.76-1.61		
Vaccine type	0.87	0.60-1.26	1.98	0.87-4.50	0.87	0.54-1.39	0.71	0.45-1.14		
(high dose: standard)										
Time between vaccine	1.07	0.76-1.51	0.88	0.43-1.79	0.94	0.61-1.45	1.05	0.76-1.45		
& symptom onset										
# of comorbidities	0.84	0.66-1.07	1.20	0.72-1.99	0.82	0.60-1.11	0.81	0.60-1.10		
Immunosuppression	1.56	1.15-2.12	1.04	0.56-1.92	1.86	1.25-2.75	1.40	0.95-2.05		
Month of Season	1.31	0.79-2.19	1.04	0.36-2.97	1.24	0.66-2.32	1.23	0.69-2.18		
(Nov → April)										
Figure 2: Logistic regression analyses of vaccinated, hospitalized influenza positive patients; vaccinated, hospitalized patients with influenza /										

subtypes and self-reported vaccinated, hospitalized influenza positive patients.

Figure 3: Predicted Probability of Hospitalization with Influenza, Influenza A/H1N1 and Influenza A/H3N2 in Vaccinated Patients Compared to Age. These models were developed based on the risk of female, immunocompromised patients in February of the 2016-2017 influenza season with 2 comorbidities who received a standard dose vaccine requiring hospitalization due to influenza.

- 1236 patients met study criteria, and 235 (19%) tested positive for influenza.
- Morbid obesity was more common in influenza negative patients (13% vs 8%, p = 0.04).
- Immunosuppression was more common in influenza positive patients (63% vs 54%, p = 0.01).
- Other demographics, vaccine history and comorbidities were similar between the two groups.
- Logistic regression analysis demonstrated older patients (OR 1.47, 95% CI 1.03-2.10) and immunosuppressed patients (OR) 1.56, 1.15-2.12) were at increased risk for influenza.
- Immunosuppression increased the risk for influenza A/H3N2 (OR 1.86, 95% CI 1.25-2.75).
- A sensitivity analysis was performed on patients who selfreported influenza vaccination for the current season without vaccine verification and demonstrated increased risk of influenza in older adults (OR 1.66, 95% CI 1.16-2.39).

VANDERBILT VERSITY

FIGURE 2: LOGISTIC REGRESSION ANALYSES

- complications.

1. Heikkinen T, Ikonen N, Ziegler T. Impact of influenza B lineage-level mismatch between trivalent seasonal influenza vaccines and circulating viruses, 1999-2012. Clin Infect Dis **2014**; 59:1519-24. 2. Rambhia KJ, Rambhia MT. Early Bird Gets the Flu: What Should Be Done About Waning Intraseasonal Immunity Against Seasonal Influenza?

Clin Infect Dis 2019; 68:1235-40 3. Guay DP. Influenza viral infection in the elderly. Aging Health **2010**; 6:319-44.

Castrucci MR. Factors affecting immune responses to the influenza vaccine. Hum Vaccin Immunother 2018; 14:637-46. elicited by egg-adapted vaccine strains. Proc Natl Acad Sci U S A 2017; 114:12578-83.

5. Zost SJ, Parkhouse K, Gumina ME, et al. Contemporary H3N2 influenza viruses have a glycosylation site that alters binding of antibodies 6. People at High Risk for Flu Complications. Centers for Disease Control and Prevention., 2020. 7. Kunisaki KJ, EN. Influenza in immunosuppressed populations: a review of infection frequency, morbidity, mortality, and vaccine responses.

Lancet Infect Dis 2009; 9:493-504

8. Goodwin K, Viboud C, Simonsen L. Antibody response to influenza vaccination in the elderly: a quantitative review. Vaccine 2006; 24:1159-69. 9. Hospitalized Adult Influenza Vaccine Effectiveness Network (HAIVEN). Centers for Disease Control and Preventioni, 2019.

Funding source: CDC HAIVEN 5 U01IP000979 Special thanks to Keipp Talbot, Yuwei Zhu, Dayna Wyatt, Zhouwen Liu, Milner Staub, Patty Wright, Tom Talbot, Lora Thomas, Gowri Satyanaryana, Anna Person, Christina Fiske, David Aronoff, Nora Gilgallon-Keele, Jay & Marta Kimball and Shravan Nadella

MEDICAL CENTER

CONCLUSION

Our study demonstrated an increased risk of influenza vaccine failure in older patients and immunosuppressed patients. • These groups are also at increased risk for influenza

• To improve protection of these patients against future influenza illnesses, more effective vaccines are needed, and more research on ring vaccination should be pursued.

REFERENCES

ACKNOWLEDGMENTS

RESULTS