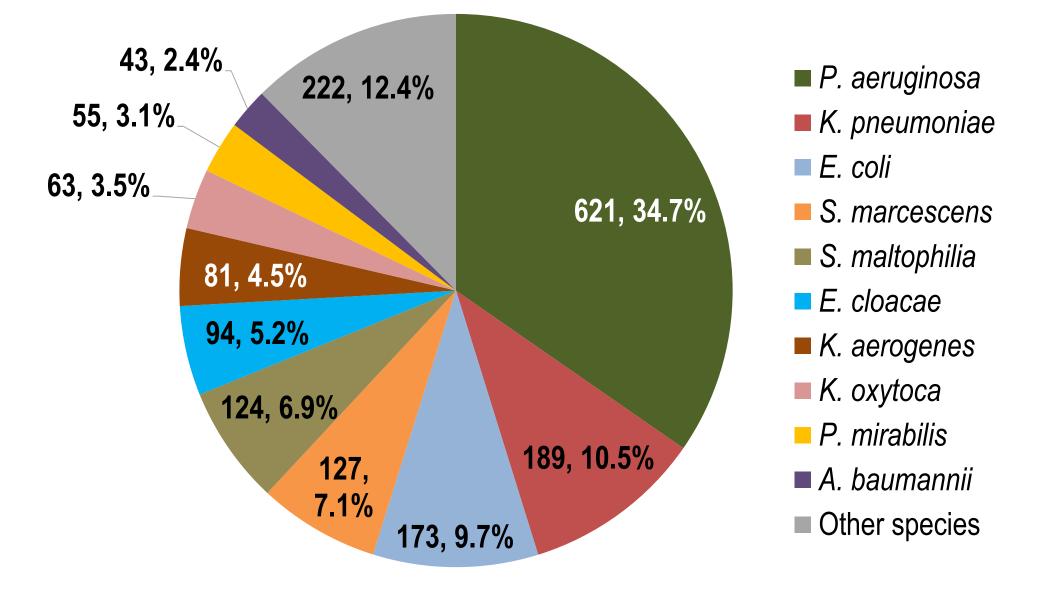
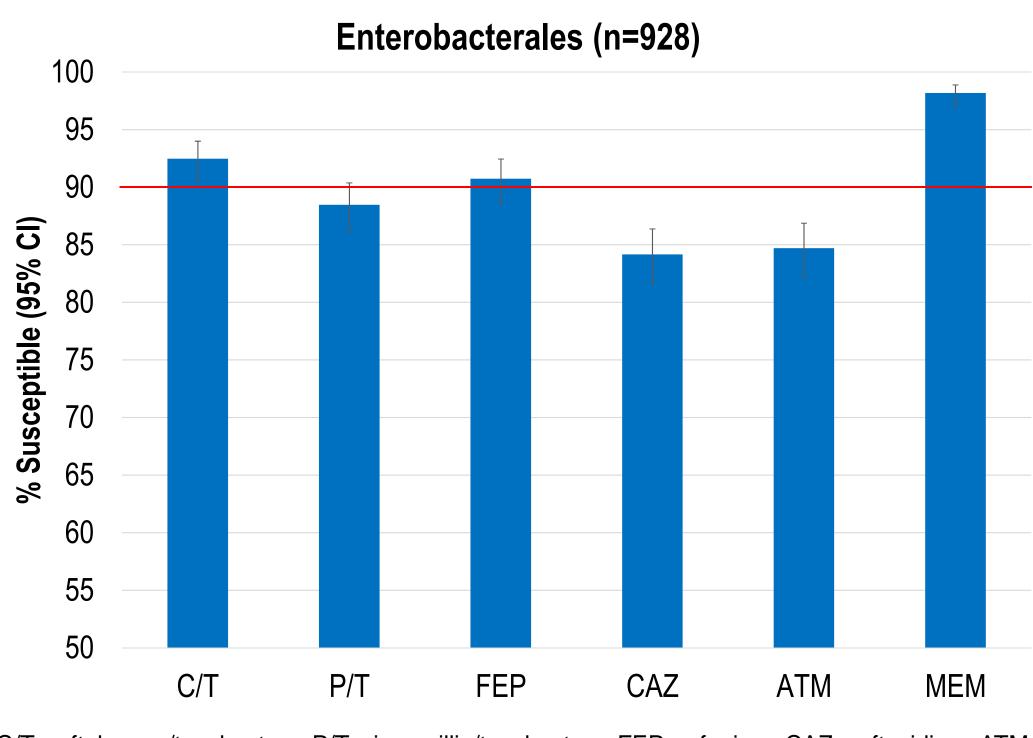
Activity of Ceftolozane/Tazobactam against Gram-Negative Isolates from Lower Respiratory Tract Infections – SMART United States 2018


Introduction

Ceftolozane tazobactam (C/T)an anti-İS cephalopseudomonal sporin combined with a β lactamase inhibitor. C/T has approved by the been United States Food & Drug (FDA) and Administration Medicines the European (EMA) for Agency urinary tract complicated infections, complicated infections, intraabdominal and hospital-acquired and ventilator - associated bacpneumonia. Using terial collected in the isolates United States as part of the global Study for Monitoring Resistance Antimicrobial (SMART) Trends surveillance program, we evaluated the activity of C/T and comparators against gram-negative pathogens collected from patients with respiratory tract lower infections (LRTI).

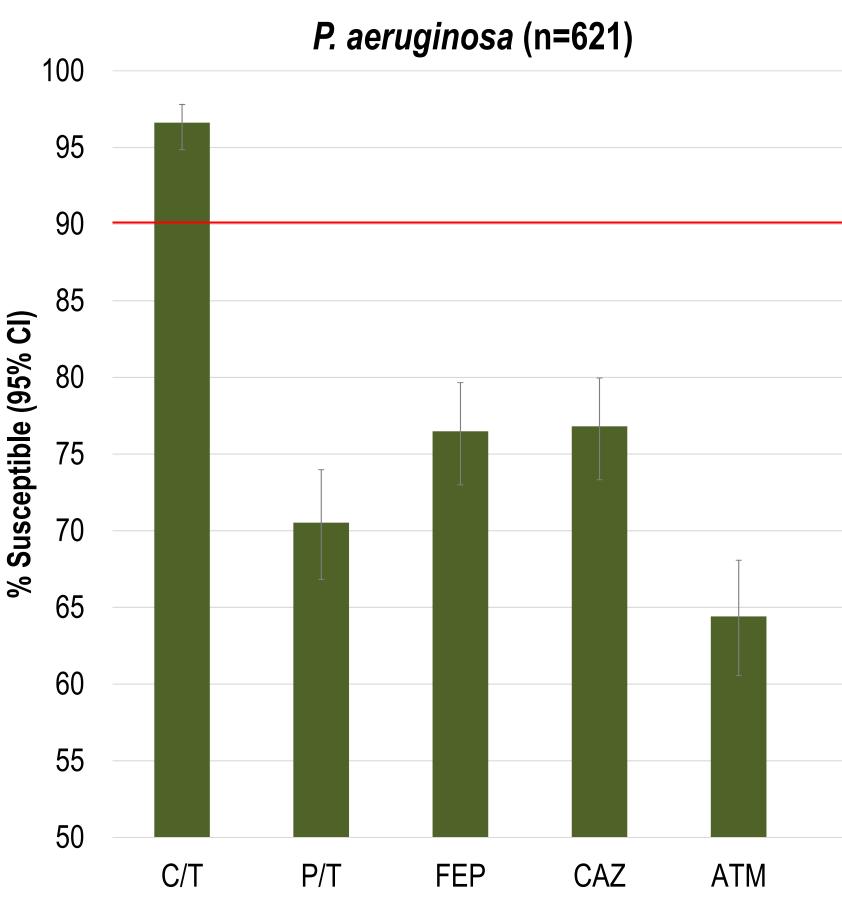

Methods

In 2018, 24 hospitals in the States United each col-100 conlected up to aerobic secutive or facultatively anaerobic gram-negative bacilli from 1792 LRTI, for a total of MICs isolates. were CLSI determined using microdilution and CLSI interpreted with breakpoints [1, 2]. C/Tnonsusceptible (NS)Enterobacterales and Pseudomonas aeruginosa isolates were screened by PCR and sequencing for β-lacgenes encoding tamases [3].

Figure 1. Species distribution (n, %) among collected gramnegative isolates (n=1792) from patients with LRTI

Figure 2. Susceptibility to C/T and β-lactam comparators of all Enterobacterales combined

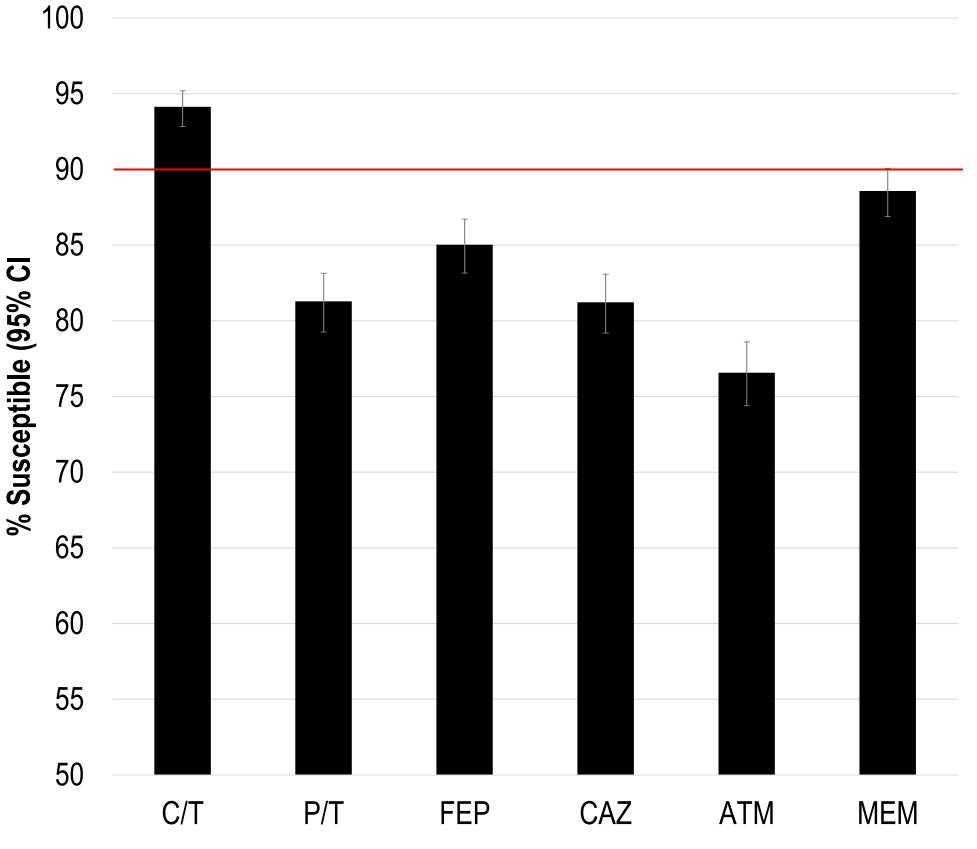
C/T, ceftolozane/tazobactam; P/T, piperacillin/tazobactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; MEM, meropenem; CI, confidence interval.


Table 1. Susceptibility to C/T and β -lactam comparators of the most common Enterobacterales species

		% Susceptible					
Species	n	C/T	P/T	FEP	CAZ	ATM	MEM
K. pneumoniae	189	89.9	82.5	78.8	75.7	77.8	95.2
E. coli	173	98.3	92.5	89.0	85.6	85.0	100
S. marcescens	127	96.1	93.7	96.9	95.3	92.9	96.1
E. cloacae	94	85.1	86.2	90.4	76.6	77.7	98.9

C/T, ceftolozane/tazobactam; P/T, piperacillin/tazobactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; MEM, meropenem

Results



C/T, ceftolozane/tazobactam; P/T, piperacillin/tazobactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; MEM, meropenem; CI, confidence interval

Figure 4. Susceptibility to C/T and β-lactam comparators of Enterobacterales and *P. aeruginosa* combined

Enterobacterales + *P. aeruginosa* (n=1549)

C/T, ceftolozane/tazobactam; P/T, piperacillin/tazobactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; MEM, meropenem; CI, confidence interval

M. Motyl², D. Sahm¹

¹IHMA, Schaumburg, IL, USA

MEM

Figure 5. Susceptibility to C/T and β-lactam comparators of nonsusceptible phenotypes of Enterobacterales and P. aeruginosa combined

C/T, ceftolozane/tazobactam; P/T, piperacillin/tazobactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; MEM, meropenem; CI, confidence interval

Table 2. Acquired β -lactamases detected in molecularly characterized C/T-nonsusceptible Enterobacterales and *P. aeruginosa* isolates^{a, b}

	n (%)				
Genotype	Enterobacterales (n=67)	<i>P. aeruginosa</i> (n=21)			
$KPC \pm ESBL \pm AmpC$	13 (19.4%)				
IMP		1 (4.8%)			
$AmpC \pm ESBL$	1 (1.5%)				
ESBL only	11 (16.4%)				
None detected	42 (62.7%) ^c	20 (95.2%) ^d			

^aOriginal spectrum β-lactamases (e.g., TEM-1, SHV-1) and intrinsic AmpC β-lactamases common to *P. aeruginosa* and some Enterobacterales species such as Enterobacter are not included in this analysis.

^bThree C/T-NS Enterobacterales isolates were not molecularly characterized.

^cAmong the 42 Enterobacterales isolates in which no acquired β-lactamases were detected, 39 (92.9%) were species with intrinsic AmpC.

^dOther resistance mechanisms such as AmpC subtypes with mutations in the Ω -loop or in amino acids that interact with it, or undetected β -lactamases may be involved [4]. ESBL, extended-spectrum β -lactamase.

²Merck & Co., Inc., Kenilworth, NJ, USA

IHMA 2122 Palmer Drive Schaumburg, IL 60173 USA www.ihma.com

Results Summary

- Among all gram-negative pathogens collected from patients with LRTI, the 3 most common species were *P. aeruginosa*, *K. pneumoniae*, and E. coli (Figure 1). Enterobacterales and P. aeruginosa combined comprised 86% of all collected gram-negative isolates from LRTI.
- C/T was active against 92.5% of all Enterobacterales isolates combined. Among the comparator β -lactams, only meropenem showed higher activity (Figure 2).
- C/T was active against 85-98% of the 4 most common Enterobacterales species (Table 1).
- Among P. aeruginosa isolates, susceptibility to C/T was 96.6%, 20-32 percentage points higher than to the tested comparator β-lactams (Figure 3).
- C/T was active against 94.1% of all Enterobacterales and P. aeruginosa combined, 6-18 percentage points higher than the other tested comparator agents (Figure 4).
- Among subsets of Enterobacterales and P. aeruginosa isolates that were nonsusceptible to commonly used β -lactams, including meropenem, C/T maintained activity against 69-83% of isolates (Figure 5).
- Among molecularly characterized C/T-NS Enterobacterales isolates, 19% carried KPC, 16% carried ESBL, and 58% were species with intrinsic AmpC in which no acquired β -lactamases were detected. Among 21 molecularly characterized C/T-NS P. aeruginosa, one isolate carried an IMP-type metallo- β -lactamase, and in the remaining isolates no acquired β -lactamases were detected (Table 2).

Conclusions

With its broad coverage of Enterobacterales and *P. aeruginosa*, C/T can provide an important empiric therapy option for patients with LRTI in the United States, including those with infections caused by meropenemnonsusceptible isolates.

References

- 1. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standards – Eleventh Edition. CLSI document M07-Ed11. 2018. CLSI, Wayne, PA.
- 2. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing – 30th ed. CLSI Supplement M100. 2020. CLSI, Wayne, PA.
- 3. Lob SH, Biedenbach DJ, Badal RE, Kazmierczak KM, Sahm DF. Antimicrobial resistance and resistance mechanisms of Enterobacteriaceae in ICU and non-ICU wards in Europe and North America: SMART 2011–2013. J Glob Antimicrob Resist 2015; 3: 190-7.
- 4. Fraile-Ribot PA. Cabot G. Mulet X. Periañez L. Martín-Pena ML, Juan C. et al. Mechanisms leading to in vivo ceftolozane/tazobactam resistance development during the treatment of infections caused by MDR Pseudomonas aeruginosa. J Antimicrob Chemother. 2018;73:658-63.

Funding for this research was provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ USA. The authors thank all the participants in the SMART program for their continuing contributions to its success.

