

Association of Rapid Pathogen Identification and Pharmacist Intervention on Time to Optimal Antimicrobial Therapy for Patients with Bloodstream Infections at Two Community Hospitals

Bryant M. Froberg, PharmD; Nicholas P. Torney, PharmD, BCPS, BCPID; Juliet Chijioke, PharmD; Cynthia D. Nichols, PhD

Contact: Bryant Froberg, PharmD Address: 1105 6th St, Traverse City, MI 49684

> Email: bfroberg@mhc.net Telephone: 231-935-3281

Background

- Bloodstream Infections (BSIs) are associated with poor patient outcomes including high mortality and extended length of hospital stay
- Delayed administration of effective antibiotics increases risk of mortality
- Use of non-optimal antibiotics may lead to reduced efficacy, increased adverse drug reactions, and/or promote resistance development
- Rapid Diagnostic Tests (RDTs) for BSIs with real-time stewardship interventions have been shown to:
 - Decrease mortality

MUNSON HEALTHCARE

- ☐ Decrease time to optimal antimicrobial therapy
- Decrease hospital length of stay
- ☐ Decrease health-system costs
- There is a lack of evidence of the utility of RDTs with intervention at smaller community

Objective

To investigate if implementing real-time pharmacist intervention to rapid pathogen identificatior at two rural community hospitals is associated with improved time to optimal antimicrobial therapy as well as clinical outcomes and health-system costs for patients with BSIs.

Primary Outcome: Time to optimal antimicrobial therapy

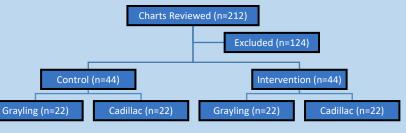
Secondary Outcomes: In-hospital mortality, time to effective antimicrobial therapy, length of stay, admission cost, 30-day readmission

Methods

Study Design: Retrospective, quasi-experimental pre-post

Institutions Involved:

- Munson Healthcare Cadillac Hospital: 49 bed community hospital in Northern Michigan Munson Healthcare Grayling Hospital: 71 bed community hospital in Northern Michigan
 - **Inclusion Criteria**


Exclusion Criteria

- ☐ 18 years of age ☐ Admitted to Munson Cadillac or
- **Grayling Hospital** ☐ At least one positive blood culture
- ☐ Culture result known at time of admission
- ☐ Hospice/Palliative Care Consult
- □ Pregnant
- ☐ Polymicrobial Blood Culture
- □ Transplant Patient

Intervention: During pharmacy hours of operations (Grayling 60 hrs/week; Cadillac 77 hrs/week) pharmacists reported positive blood culture results and recommendations to primary care team

Review for Inclusion/Exclusion

n	Exclusion Criteria	Control (n=60)	Intervention (n=64)
	Discharged within 24 hours	20	20
	Not Admitted	16	20
	Needed Higher level of care	17	19
	Transferred within 24 hours	4	3
	Expired prior to blood culture positivity	1	2
	Polymicrobial	1	0
	Hospice	1	0

Data listed as: Number (%), unless otherwise noted

Patient Demographics

1	Patient Demographics	Control (n=44)	Intervention (n=44)	p-value
	Male	20 (46)	24 (55)	0.523
	Age (mean ± SD)	68 ± 19	74 ± 13	0.1
	Diabetes	15 (34)	20 (46)	0.384
	Heart Failure	6 (14)	13 (30)	0.119
	COPD	9 (21)	18 (40)	0.063
	CKD	8 (18)	18 (40)	0.034
	Chronic Liver Disease	5 (11)	1 (2)	0.202
	Trauma	0 (0)	0 (0)	1
	Obesity	11 (25)	9 (21)	0.8
	qPITT Bacteremia Score (mean ± SD)	1.5 ± 1.5	1.8 ± 1.6	0.184
	ICU Admission	12 (27)	18 (41)	0.261
	Transfer to higher LOC	6 (14)	4 (9)	0.739

Data listed as: Number (%), unless otherwise noted

Source	Control (n=44)	Intervention (n=44)		
Contaminant	14 (32)	17 (39)		
Urinary	16 (36)	14 (32)		
Respiratory	6 (14)	7 (16)		
SSTI	3 (7)	2 (5)		
Intra-abdominal	3 (7)	1 (2)		
Catheter-related	1 (2)	0 (0)		
Unknown	1 (2)	2 (5)		
Other	0 (0)	1 (2)		
	Difference in Source, p-value 0.776			
Data listed as: Number (%), unless of	ata listed as: Number (%), unless otherwise noted			

Microbiologic Distribution

	Organism	Control (n=44)	Intervention (n=44)	
	Escherichia coli	12 (27)	10 (23)	
	Coag-neg Staph	8 (18)	11 (25)	
	Streptococcus sp.	6 (14)	8 (18)	
	Micrococcus sp.	2 (5)	4 (9)	
	MSSA	3 (7)	2 (5)	
	Corynebacterium sp.	1 (2)	1 (2)	
	Enterococcus Faecalis	0 (0)	2 (5)	
	MRSA	1 (2)	0 (0)	
	Klebsiella pneumoniae	0 (0)	1 (2)	
	Other	11 (25)	5 (11)	
ı	Difference in Organisms, p-value 0.914			

Data listed as: Number (%), unless otherwise noted

Results

Outcome	Control (n=44)	Intervention (n=44)	p-value
Primary			
Time to optimal Antimicrobial Therapy, Hours;	27.3 (35.5)	19.4 (30)	0.265
mean (SD)			
Secondary			
Time to effective Antimicrobial Therapy, Hours;	1.3 (8.1)	0.7 (0.5)	0.319
mean (SD)			
In-Hospital mortality; n (%)	1 (2.3)	4 (9.1)	0.360
Admission length, Days; mean (SD)	4.2 (2.5)	5 (2.8)	0.183
Admission Cost, USD in thousands; mean (SD)	24.6 (11.1)	32.7 (13.1)	0.013
All-cause 30 day readmission; n (%)	4 (9.1)	7 (15.9)	0.183
Post-Hoc Analysis			
Time to optimal Antimicrobial Therapy Cadillac,	31.5 (42.4)	15.2 (26.3)	0.135
Hours; mean (SD)			
Time to optimal Antimicrobial Therapy Grayling,	23 (27.4)	23.6 (33.4)	0.955
Hours; mean (SD)			
Time to optimal Antimicrobial Therapy excluding	38.7 (36.7)	31.6 (33)	0.443
contaminants, Hours; mean (SD)			
Blood culture results reported to pharmacist; n (SD)	0	25 (57)	NA

Conclusion

- ☐ Coupling real-time pharmacist intervention with RDTs showed a non-significant trend towards reducing time to optimal and effective antimicrobial therapy at two community
- The intervention was not significantly associated with any improved patient outcomes
- ☐ Future directions include intervention improvement and larger studies