

# Rapid Detection Of Bloodstream Infections, Including Molecular Characterization, From Whole Blood

Correspondence: William Mullen bmullen@momentumbio.co.uk

Aram Kadoom<sup>1</sup>, Daniel Lockhart<sup>1</sup>, Yassar Kadoom<sup>1</sup>, Sonia La Fauci<sup>1</sup>, James Turner<sup>1</sup>, Helen Bennett<sup>1</sup>, Paul Jay<sup>1</sup>, Sumi Thaker<sup>1</sup>, William Mullen<sup>1</sup> <sup>1</sup>Momentum Bioscience Ltd, Oxford, UK

100,000

### Introduction

- Diagnosis of bloodstream infections (BSI) and subsequent treatment with appropriate antimicrobials is dependent upon fast and accurate information about the causative microorganism(s).
- The time taken for blood culture, microbial identification and antimicrobial susceptibility testing (AST), can lead to poor antimicrobial stewardship and patient care.
- Many antimicrobial change decisions are based on the results of a Gram stain, with this being the first result available.
- A rapid test, which can confirm BSI and characterize the causative pathogen(s), would improve antimicrobial stewardship and patient care.

### Method

- SepsiSTAT<sup>®</sup> is a rapid direct-from-blood molecular test, developed by Momentum Bioscience Ltd, for the detection of BSI, with a time-to-result of < 4 hours.
- Uses whole blood to detect viable microorganisms whilst also providing molecular characterization (Gram status and genus of key infectious organisms).
- Microorganisms are extracted from the sample through capture on magnetic microbeads, followed by Enzymatic Template Generation and Amplification (ETGA\*) for ultra-sensitive, universal detection of viable bacterial and fungal species.
- Simultaneously, molecular characterization (Molecular ID) also provides genus/species identification based on total microbial DNA present (from viable cells and cell-free DNA).
- The detection limits of SepsiSTAT<sup>®</sup> were evaluated for a broad panel of microorganisms, representing 80.4% of BSI reported to Public Health England (2018 report).

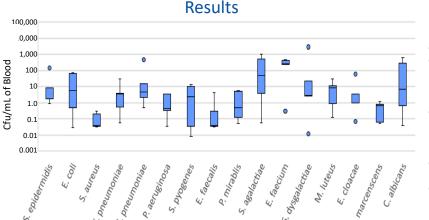



Figure 1: ETGA results for 16 microorganism panel (n=5). The boxes show the upper/lower quartiles, with the line representing the median cfu/mL. The lines (whiskers) show the lowest and highest detected cfu/mL, with dots representing outliers.

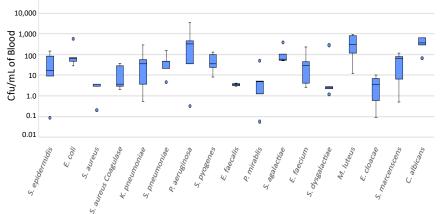



Figure 2: Molecular ID results for 16 microorganism panel (n=5). The boxes show the upper/lower quartiles, with the line representing the median cfu/mL. The lines (whiskers) show the lowest and highest detected cfu/mL, with dots representing outliers. Note that S. aureus has two SepsID detection channels: Staphylococci and Coagulase

## Discussion

- This study was carried out with five biological replicates of each of the microorganisms.
- Of the 16 microorganisms tested, all but two had an ETGA median limit of detection (LoD) of < 10 cfu/mL, and of these, five organisms were detected at < 1 cfu/mL. These results demonstrate that 77.4% of monomicrobial infections are detected at < 10 cfu/mL.
- For Molecular ID, 13 of 16 had a median LoD of < 100 cfu/mL, with six organisms being detected at < 10 cfu/mL. This shows that 76.9% of monomicrobial infections are detected at < 100 cfu/mL. Importantly, total microbial DNA in BSI has been shown to have a typical range of 100-10,000 cfu equivalents/mL (Bacconi *et al*).
- For ETGA, of the five ESKAPE organisms tested (*A. baumannii* not tested), four of these are detected at levels < 10 cfu/mL, with only *E. faecium* detected at 260 cfu/mL.
- For Molecular ID, four organisms are also detected at levels < 100 cfu/mL, with only P. aeruginosa detected at 336 cfu/mL.

References: Bacconi, Andrea, et al. (2014). "Improved sensitivity for molecular detection of bacterial and Candida infections in blood." Journal of clinical microbiology 52.9: 3164-3174.

Table: Median detections for ETGA and Molecular ID for the 16 microorganisms tested. Key shows cfu/mL blood detection levels and number of microorganisms detected at those levels

| Organism               | PHE Rank | % Infections | Cumulative<br>Infection | ETGA  | Molecular<br>ID |
|------------------------|----------|--------------|-------------------------|-------|-----------------|
| S. epidermidis         | 1        | 25.7         | 25.7                    | 8.4   | 16.8            |
| E. coli                | 2        | 24.9         | 50.6                    | 5.8   | 64.2            |
| S. aureus (*Coagulase) | 3        | 7.7          | 58.3                    | 0.1   | 3.0/ *3.6       |
| K. pneumoniae          | 4        | 4            | 62.3                    | 3.5   | 34.8            |
| S. pneumoniae          | 5        | 3.7          | 66                      | 4.6   | 47.8            |
| P. aeruginosa          | 6        | 2.2          | 68.2                    | 0.5   | 336.0           |
| S. pyogenes            | 7        | 2            | 70.2                    | 2.4   | 36.0            |
| E. faecalis            | 8        | 1.8          | 72                      | 0.1   | 3.6             |
| P. mirabilis           | 9        | 1.8          | 73.8                    | 0.5   | 5.0             |
| S. agalactiae          | 10       | 1.6          | 75.4                    | 50.8  | 59.0            |
| E. faecium             | 11       | 1.4          | 76.8                    | 260.0 | 30.2            |
| S. dysgalactiae        | 12       | 1            | 77.8                    | 2.9   | 2.7             |
| M. luteus              | 14       | 0.9          | 78.7                    | 8.3   | 312.0           |
| E. cloacae             | 15       | 0.8          | 79.5                    | 1.0   | 3.4             |
| S. marcescens          | 18       | 0.5          | 80                      | 0.6   | 62.6            |
| C. albicans            | 25       | 0.4          | 80.4                    | 6.6   | 368.0           |

Key:

|       | ETGA | Molecular ID |
|-------|------|--------------|
| <1000 | 16   | 16           |
| <100  | 15   | 13           |
| <10   | 14   | 6            |
| <1    | 5    | 0            |

### Conclusion

- SepsiSTAT<sup>®</sup> results demonstrate the sensitivity of universal detection of viable microorganisms.
- SepsiSTAT<sup>®</sup> detects clinically relevant microorganisms at low levels with sensitive and specific detection.
- Current development aims to shorten the time-to-result to < 3 hours.
- Studies in a clinical setting with seek to further demonstrate the efficacy and potential to impact patient care.