

Yale SCHOOL OF MEDICINE

BACKGROUND:

- Approximately 25% of those with HIV are coinfected with
- Current treatment cascades focus on HCV mono-infected patients and based on multiple data sources, not surveillance
- Using expanded surveillance capacity and validated HIV matching algorithms, we created an HCV treatment cascade for HIV/HCV coinfected persons in Connecticut

METHODS:

Surveillance databases used: CTEDSS (HCV) and eHARS (HIV) 1. eHARS timeframe: HIV Labs from 1/1/2015 to 10/1/2019

- 2. Two HCV timelines were studied:
- **Cumulative:** All CTEDSS entries ever recorded (1/1/1994 to 1/1/2020)
- **Abbreviated:** All CTEDSS entries ever with labs from 1/1/2016 to 1/1/2020.
- 3. Coinfected lists generated by matching CTEDSS and eHARS
- 4. HCV treatment cascade status assessed using standardized surveillance case definitions

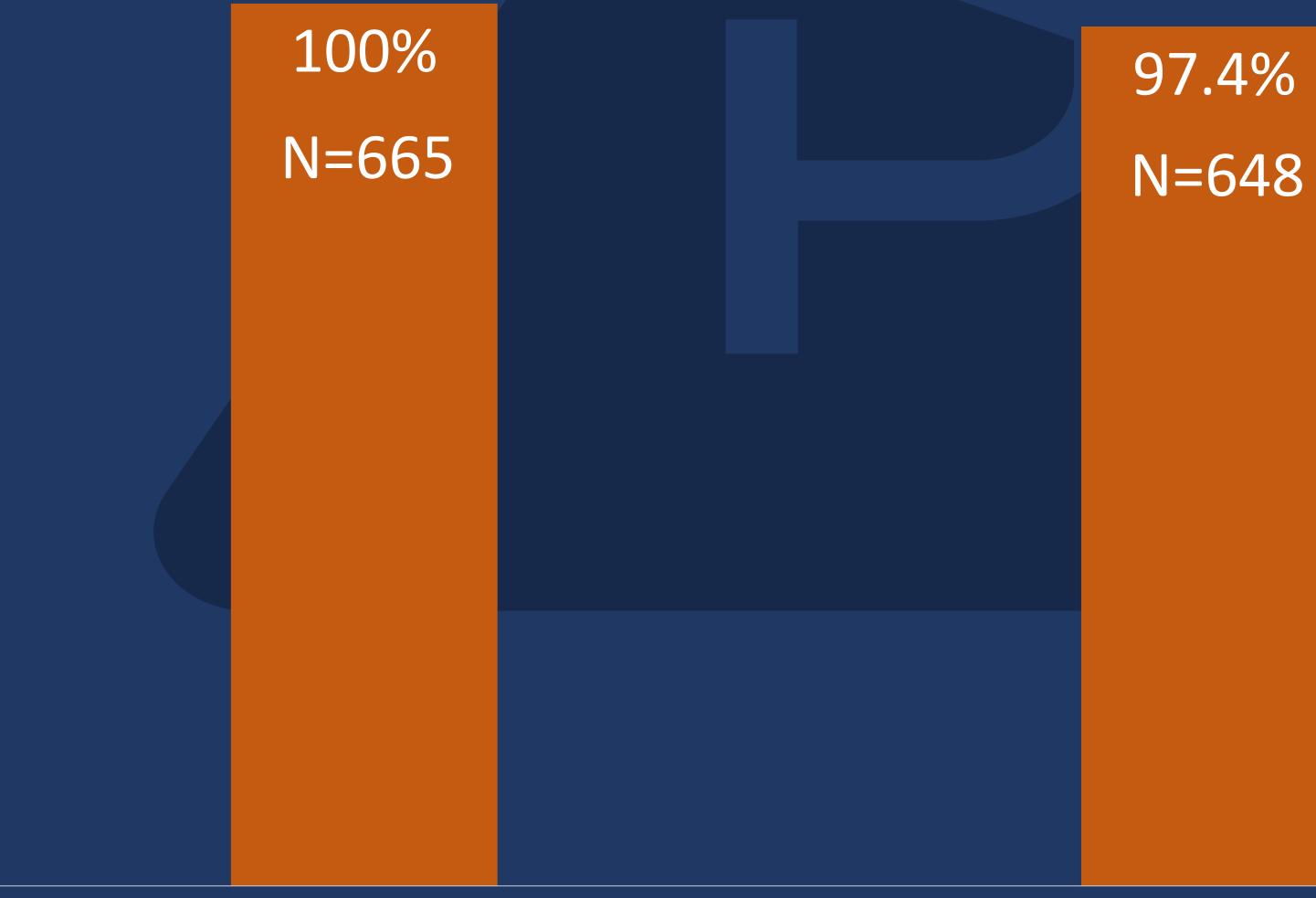
Table 1: Disposition definitions using surveillance labs to determine cascade status

Disposition	Reported Laboratory Sequence					
Not Chronic	One or more AB positive only result					
Positive screen						
Chronic	 One or more PCR positive only result 					
Positive screen & Chronic	 AB positive results with one or more sequential PCR 					
	positive result					
SVR Positive screen, Chronic & SVR	 AB positive results with one or more sequential PCR 					
	positive result, then one or more sequential PCR negative					
	result					
	 One or more PCR positive result then one or more 					
	sequential PCR negative result					
Not Infected (Excluded)	 One or more PCR negative only result 					
	 AB positive result with one or more sequential PCR 					
	negative result with no PCR positive results					
Unknown	 non-sequential multiple AB positive, PCR positive, and PCR 					
(Excluded)	negative results					

SUMMARY:

- Using updated statewide surveillance, the SVR rate was 68.6% (Figure 1)
- SVR rates vary between abbreviated and cumulative timeframes (Figure 4)
- Contributing factors for improved SVR rates include:
- i. 2016 HCV case definition change (increased HCV PCR testing)
- ii. Enhanced CTEDSS electronic lab interface with ability to recording serial negative PCRs
- iii. Enhanced DAA availability (improved treatment adherence)
- iv. Increase use of reflex PCR testing
- We believe using more updated surveillance data better represents the current coinfected population
- Most likely to achieve SVR: baby boomers & low/undetectable HIV viral loads (Table 2)

Creating a Statewide HCV Treatment Cascade for HIV/HCV Co-Infected Persons Using a Partnership with DPH

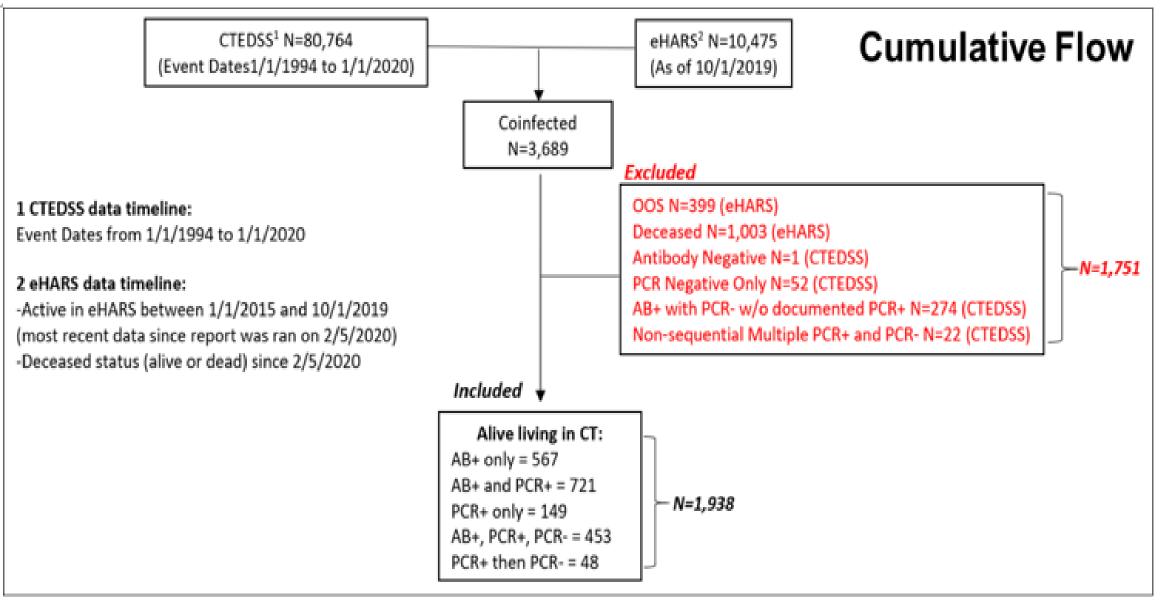

<u>Maximilian Wegener¹</u>, Ralph Brooks¹, Lisa Nichols¹, Suzanne Speers², Merceditas Villanueva¹ ¹Yale University - New Haven, CT, United States; ²CT Department of Public Health – Hartford, CT, United States

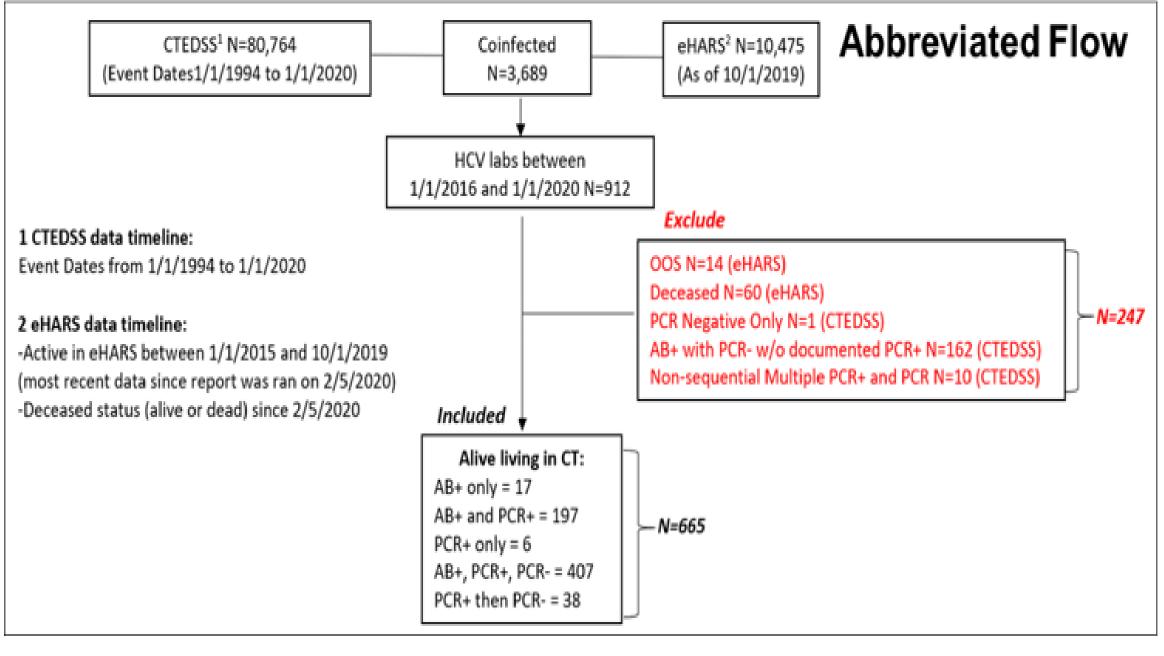
treatment cascades for HIV/HCV co-

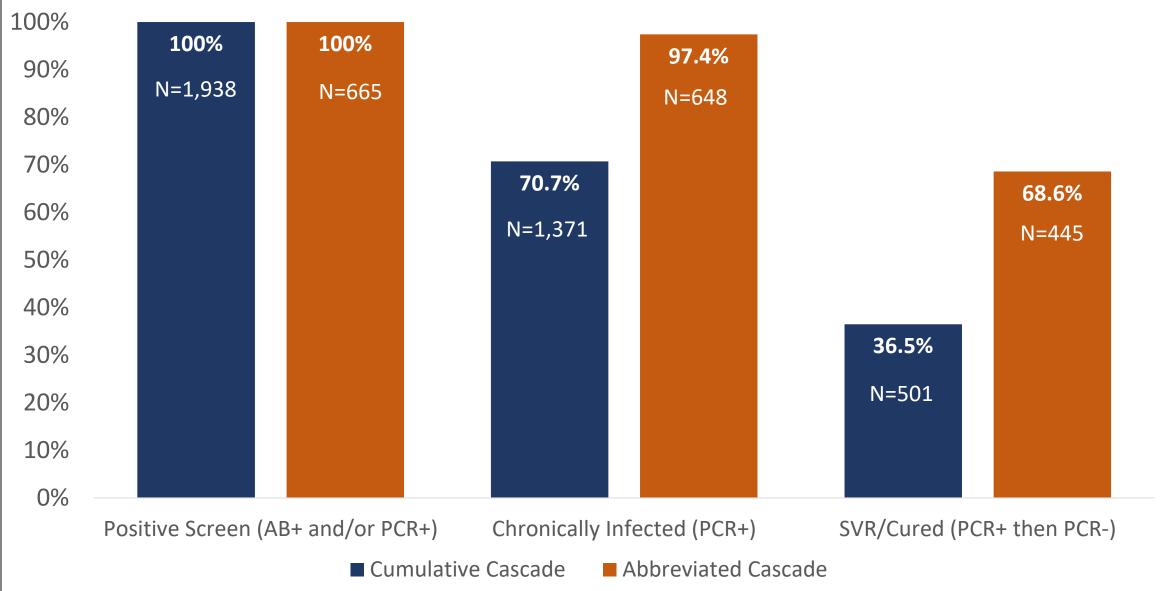
It is feasible to create statewide HCV infected individuals using public health

surveilance

Figure 1: HCV treatment cascade for HCV/HIV coinfected individuals using abbreviated timeframe




Positive Screen (AB+ and/or Chronically Infected (PCR+) PCR+)


68.6%

N=445

SVR/Cured (PCR+ then PCR-)

Table 2: Demographic breakdown and analysis of SVR vs Not SVR for Abbreviated cascade timefram

Variable	Categories	SVR (N=445)	Not SVR (N=220)	X ² p-value	Odds Ratio
Birth Cohort	Baby Boomer	323 (72.6%)	125 (56.8%)	<0.0001	2.01 (1.4-2.8)
(Baby boomer includes 8 cases that are older)	Younger than Baby Boomer	122 (27.4%)	95 (43.2%)		Ref
Gender	Male	323 (72.6)	151 (68.6%)	0.29	*
Gender	Female	122 (27.4%)	69 (31.4%)		
Race/Ethnicity	White	107 (24%)	53 (24.1%)	0.97	*
	Black	145 (32.6%)	74 (33.6%)		
Race/ Luminity	Hispanic	190 (42.7%)	91 (41.4%)		
	Other	3 (0.7%)	2 (0.9%)		
	Heterosexual Contact	43 (9.7%)	17 (7.7%)	0.67	*
	MSM	31 (7%)	15 (6.8%)		
HIV Transmission Mode	MSM and PWID	18 (4%)	11 (5%)		
	PWID	330 (74.1%)	170 (77.3%)		
	Other/Unknown	23 (5.2%)	7 (3.2%)		
	High (>10,000)	10 (2.3%)	21(10.1%)	<0.0001	Ref
HIV Viral Load Level (SVR N=438, Not SVR N=208)	Low (200-10,000)	21 (4.8%)	25 (12%)		1.76 (0.68-4.56)
5VN N-430, NUL SVN N-208)	Undetectable (<200)	407 (92.9%)	162 (77.9%)		5.28 (2.43-11.45)

This project is supported by the Health Resources and Services Administration (HRSA) of the U.S. Department of Health and Human Services (HHS) as part of an award totaling \$2,300,000 with no percentage financed with nongovernmental sources. The contents are those of the authors and do not necessarily represent the official views of, nor an endorsement, by HRSA, HHS or the U.S. Governme

DISCLAIMER: The Department of Public Health Human Investigations Committee approved this research project, which used data obtained from the Department of Public Health. The Department of Public Health does not endorse or assume any responsibility fo any analyses, interpretations or conclusions based on the data. The presenter assumes full responsibility for all such analyses interpretations and conclusions