Epidemiology and Susceptibility to Imipenem/Relebactam of Gram-Negative Pathogens from Patients with Lower Respiratory Tract Infections – SMART United States 2017-2018

Introduction

Relebactam (REL) inhibits class A and C β -lactamases and was approved in the United States (US) combined with imipenem/ cilastatin (IMI) for complicated urinary tract and intraabdominal infections limited patients with treatment options, and for hospital-acquired / ventilator bacterial pneuassociated monia. Using isolates collected as part of the global Study for Monitoring Antimicrobial Trends (SMART) Resistance surveillance program in the US, we evaluated the activity of IMI/REL against gramnegative pathogens from patients with lower respiratory (LRTI), infections tract including a comparison isolates from ICU and non-ICU wards.

Methods

In 2017-2018, 27 US hospitals each collected up to 100 aerobic consecutive or facultative gram-negative pathogens from LRTI patients MICs year were per determined using CLSI broth microdilution and 2020 CLSI breakpoints [1-3]. Multidrugresistance (MDR) was defined as resistance to ≥3 of the sentinel following drugs: cefeaztreonam, amikacin, ceftazidime (Enteropime, bacterales only), levofloxacin, colistin, imipenem, and piperacillin/tazobactam.

Fisher's exact test was used to determine statistical significance of the difference in susceptibility rates between isolates from patients in ICU and non-ICU wards.

isolates from patients with LRTI

^aIncludes isolates from patients in emergency rooms and isolates for which the patient's location was not specified.

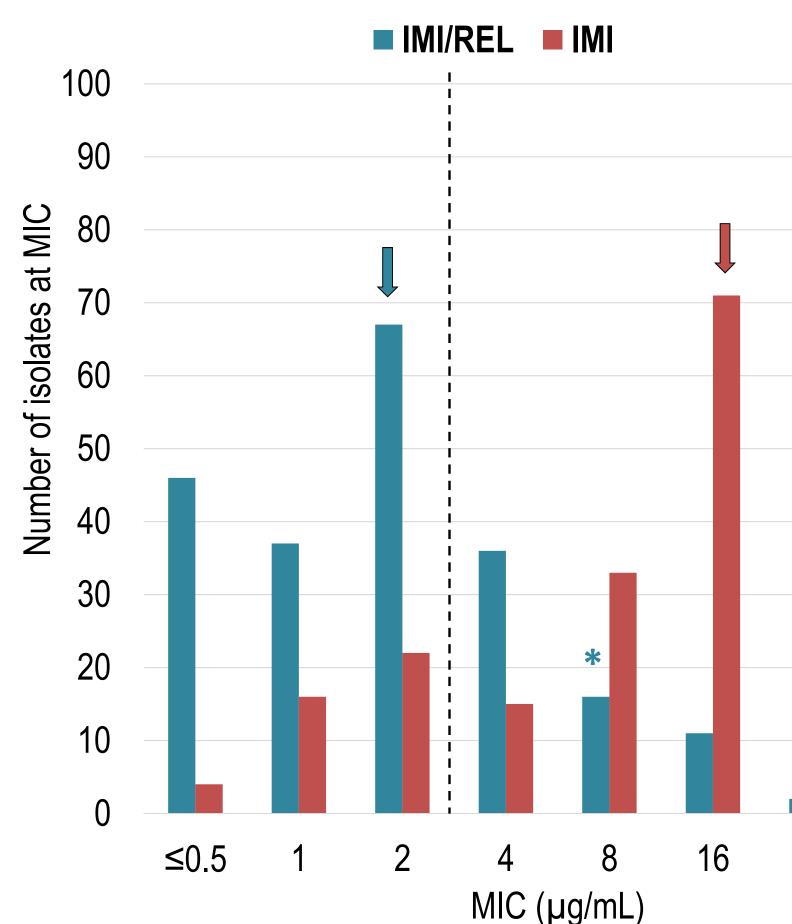

Table 1. Antimicrobial susceptibility of all Enterobacterales combined, the most common Enterobacterales species, P. aeruginosa, and Enterobacterales and P. aeruginosa combined

	% Susceptible ^a							
Species (n)	IMI/REL	IMI	FEP	CAZ	ATM	P/T	CIP	AMK
Enterobacterales, All (2055)	92.8	87.1	89.1	83.0	83.4	87.8	76.4	99.2
MDR (247)	86.2	73.3	27.5	8.9	10.1	45.7	27.9	95.1
K. pneumoniae (427)	99.5	95.8	83.6	81.0	82.7	86.4	79.4	99.3
<i>E. coli</i> (407)	100	99.5	81.8	81.6	80.6	90.7	56.3	98.8
S. marcescens (270)	84.4	69.6	94.8	93.0	91.1	94.8	71.5	98.9
E. cloacae (218)	99.5	96.3	84.4	70.2	71.1	78.0	90.8	100
K. aerogenes (177)	98.9	85.9	95.5	70.1	72.3	72.9	93.8	100
K. oxytoca (139)	100	98.6	97.8	97.1	89.2	85.6	93.5	100
P. aeruginosa (1292)	92.9	67.0	75.2	75.2	62.4	68.7	67.6	96.6
MDR (217)	69.1	19.4	8.3	15.7	0.9	4.6	21.2	87.6
Enterobacterales+ <i>P. aeruginosa</i> (3347)	92.8	79.4	83.7	80.0	75.3	80.4	73.0	98.2
MDR (464)	78.2	48.1	18.5	12.1	5.8	26.5	24.8	91.6

^aSusceptibility values ≥90% are shaded green. Results for colistin are not shown because Enterobacterales and *P. aeruginosa* are no longer considered susceptible to colistin per CLSI 2020 guidelines, as clinical and PK/PD data demonstrated limited clinical efficacy. IMI, imipenem; REL, relebactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; P/T, piperacillin/tazobactam; CIP, ciprofloxacin; AMK, amikacin.

Results

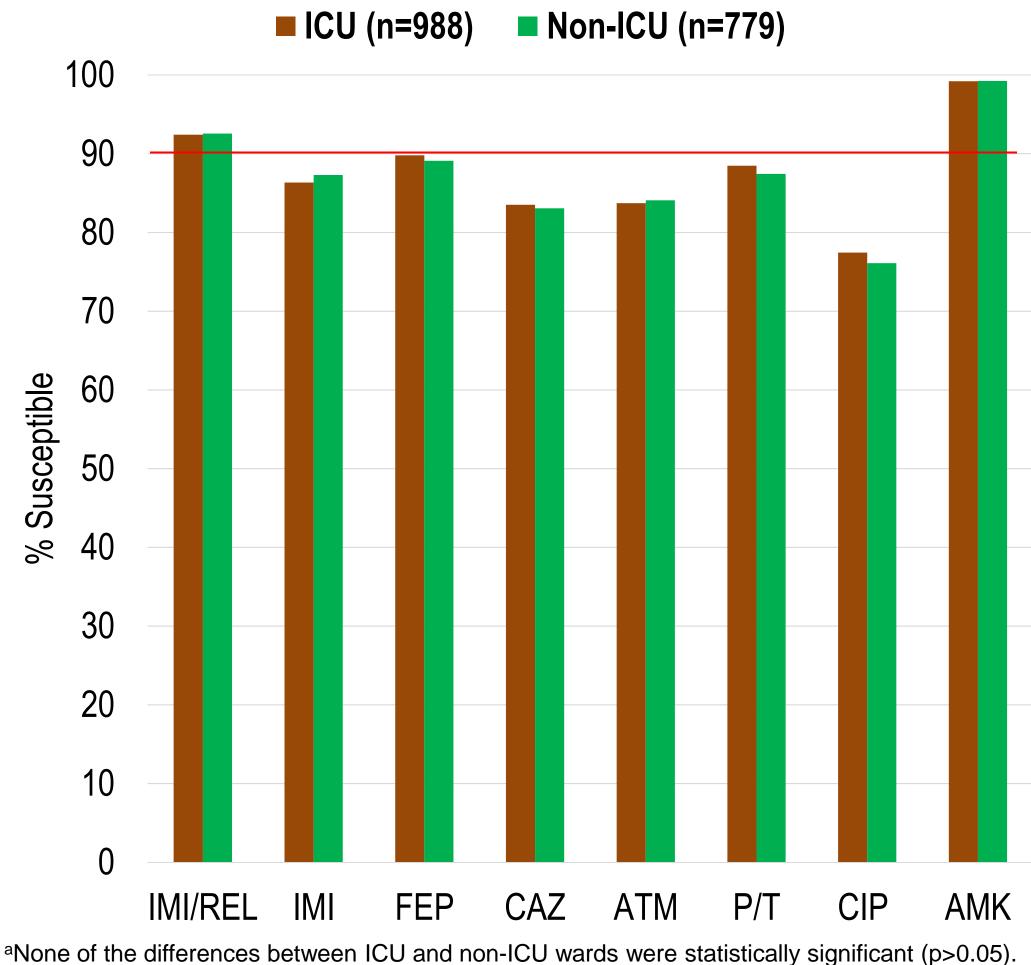
Figure 2. Distribution of IMI/REL and IMI MICs among MDR Enterobacterales (n=247)^a



^aDashed line represents the Susceptible breakpoint for imipenem and imipenem/relebactam against Enterobacterales; arrows denote the modal MICs for each drug; asterisks denote the MIC_{90} for each drug.

>8

>32


Figure 3. Distribution of IMI/REL and IMI MICs among MDR *P. aeruginosa* (n=217)^a

^aDashed line represents the Susceptible breakpoint for imipenem and imipenem/relebactam against *P. aeruginosa*; arrows denote the modal MICs for each drug; asterisks denote the MIC_{90} for each drug.

¹IHMA, Schaumburg, IL, USA

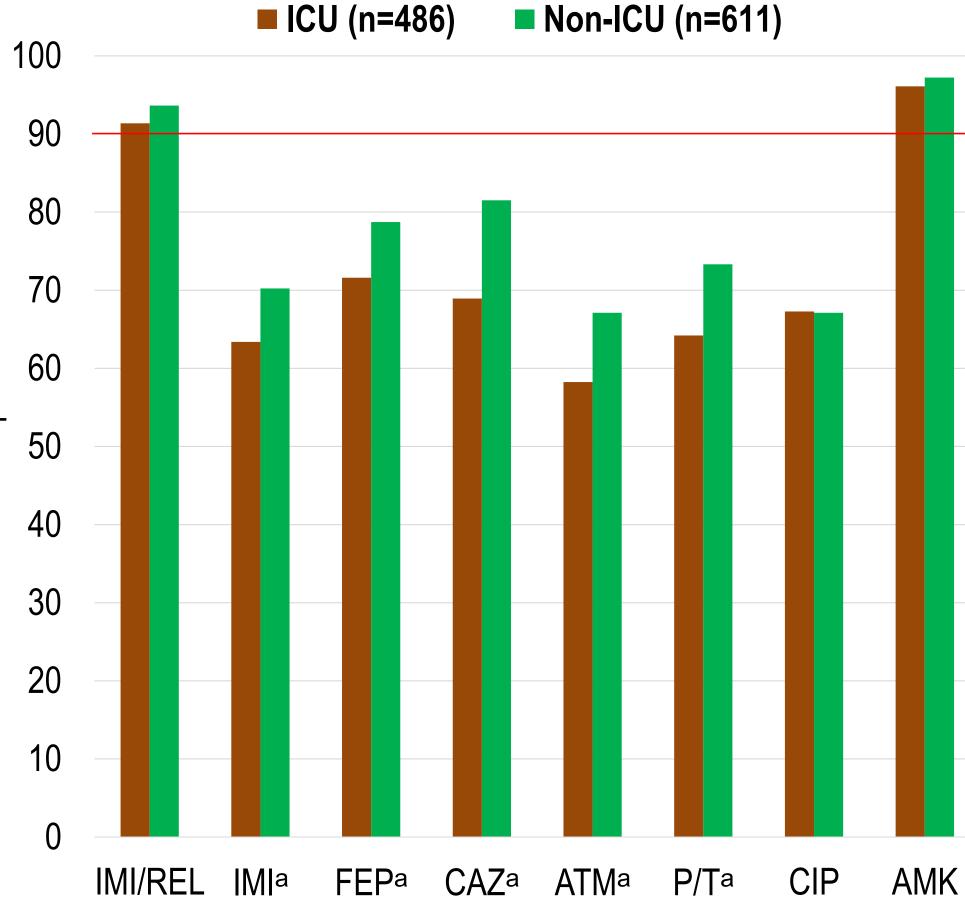

Figure 4. Antimicrobial susceptibility of all Enterobacterales combined from patients in ICU and non-ICU wards^a

Figure 5. Antimicrobial susceptibility of *P. aeruginosa* isolates from patients in ICU and non-ICU wards

IMI, imipenem; REL, relebactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; P/T,

piperacillin/tazobactam; CIP, ciprofloxacin; AMK, amikacin.

^aStatistically significant difference between ICU and non-ICU wards (p<0.05). IMI, imipenem; REL, relebactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; P/T, piperacillin/tazobactam; CIP, ciprofloxacin; AMK, amikacin.

S. Lob¹, M. Hackel¹, K. Young², M. Motyl², D. Sahm¹

²Merck & Co., Inc., Kenilworth, NJ, USA

IHMA 2122 Palmer Drive Schaumburg, IL 60173 USA www.ihma.com

Results Summary

- Among all collected gram-negative isolates from patients with LRTI, the most common species were P. aeruginosa (34%), K. pneumoniae (11%), and *E. coli* (10%) (Figure 1). There was a smaller proportion of P. aeruginosa and a larger proportion of Enterobacterales among ICU isolates than was seen in non-ICU isolates.
- IMI/REL inhibited 93% of P. aeruginosa and Enterobacterales, which included 176 isolates of *Morganellaceae* that are not expected to be susceptible to IMI or IMI/REL. S. marcescens also showed low susceptibility to IMI (69.6%), which improved upon addition of REL (84.4%) but was still reduced compared to the other common Enterobacterales species (>98%) (Table 1).
- The activity of IMI/REL against all collected Enterobacterales and P. aeruginosa combined was 9-18 percentage points higher than the comparator β -lactams. Of the tested comparators, only amikacin exceeded the activity of IMI/REL (Table 1).
- IMI/REL maintained activity against 86% of MDR Enterobacterales and 69% MDR P. aeruginosa, 13-77 percentage points higher than the tested comparator β -lactams (Table 1).
- MIC₉₀ values for IMI/REL were two doubling dilutions lower than IMI among MDR Enterobacterales and *P. aeruginosa* (Figures 2 and 3).
- Only *P. aeruginosa* showed substantial differences in susceptibility between isolates from ICU and non-ICU wards, with significantly lower activity of most β -lactams against ICU isolates (p<0.05).Susceptibility to IMI/REL was >91% in both ward types (Figures 4 and 5).

Conclusions

Among LRTI isolates collected in the US, IMI/REL was active against 93% of all Enterobacterales and *P. aeruginosa* isolates and against 78% of isolates in the MDR subset. Although resistance rates have frequently been reported to be higher in ICU than non-ICU wards, this pattern was only seen in the current study among *P. aeruginosa* isolates. IMI/REL maintained activity against >90% of Enterobacterales and *P. aeruginosa* isolates from ICU patients. These *in vitro* data suggest that IMI/REL could provide an important treatment option for patients with LRTI in the US, including those in ICUs.

References:

- 1. Clinical and Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standards -*Eleventh Edition*. CLSI document M07-Ed11. 2018. CLSI, Wayne, PA.
- 2. Clinical and Laboratory Standards Institute. *Performance Standards for Antimicrobial* Susceptibility Testing – 30th ed. CLSI Supplement M100. 2020. CLSI, Wayne, PA.
- 3. Clinical and Laboratory Standards Institute Subcommittee on AST Testing. January 2020 meeting minutes. https://clsi.org/meetings/ast-file-resources/

Funding for this research was provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ USA. The authors thank all the participants in the SMART program for their continuing contributions to its success.

https://bit.ly/322FDZ1