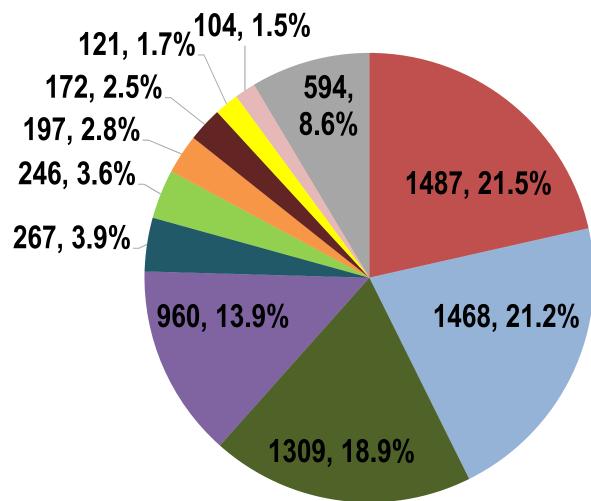
In Vitro Activity of Imipenem/Relebactam against Klebsiella pneumoniae and **Pseudomonas aeruginosa from Patients in ICUs in the Asia/Pacific region – SMART 2015-2018**


Introduction

Elevated antimicrobial resistance rates have been reported in ICUs, requiring new treatment options for patients in this setting. Relebactam (REL) is an inhibitor of class A and C β -lactamases approved in the USA in combination with imipenem/ cilastatin (IMI) for complicated urinary tract and intraabdominal infections in patients with limited treatment options, and for hospitalacquired and ventilator-associated Using bacterial pneumonia. isolates collected in Asia/Pacific for Study Monitoring for the Resistance Trends Antimicrobial (SMART) surveillance program, we evaluated the activity of IMI/REL comparators against and K. pneumoniae and P. aeruginosa from ICU patients.

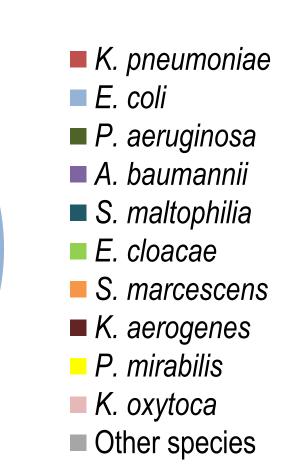
Methods

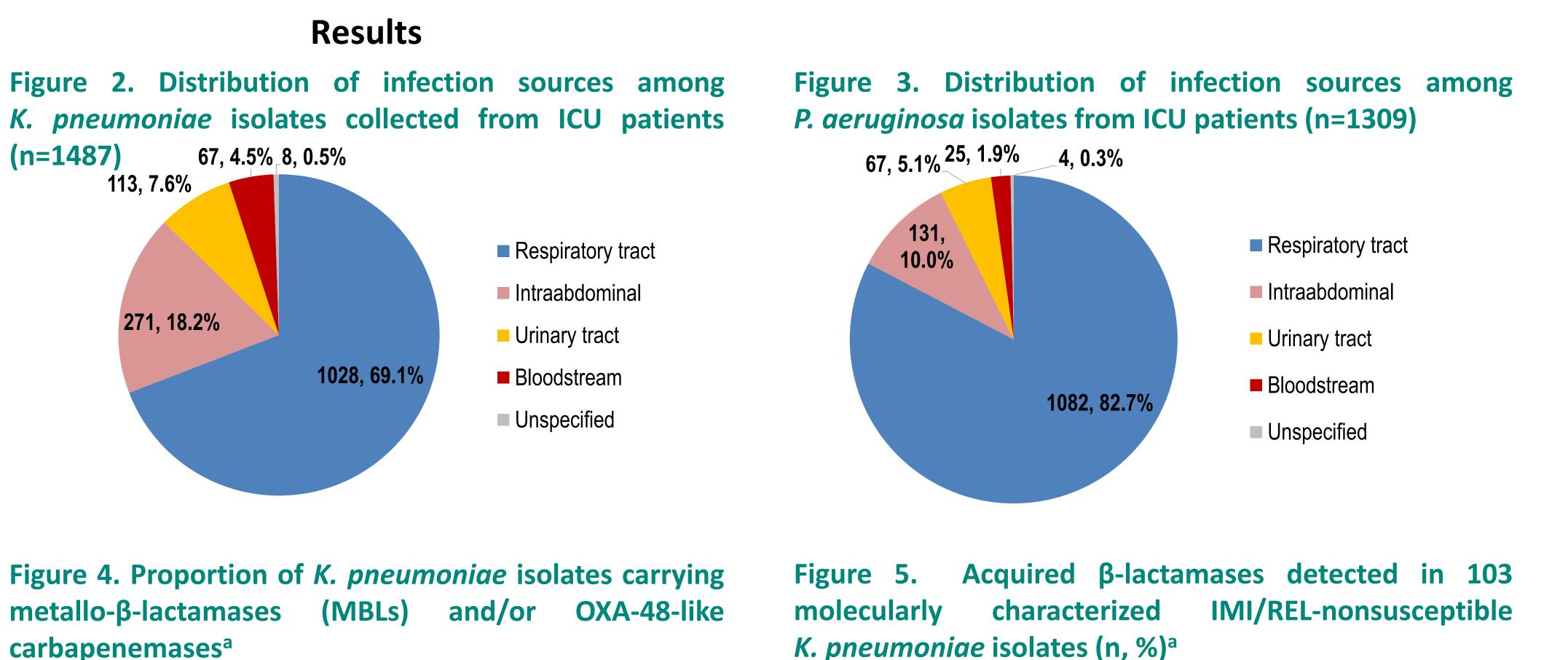
2015-2018, clinical 52 Australia, Hong laboratories in Zealand, New Kong, Malaysia, South Philippines, Singapore, Thailand, and Taiwan Korea. Vietnam each collected up to 250 consecutive aerobic or facultatively anaerobic gram-negative pathogens per year. A total of 6925 isolates from patients in ICUs were Susceptibility studied. was using CLSI broth determined microdilution and CLSI breakpoints [1-3]. IMI-nonsusceptible Enterobacterales and *P. aeruginosa* were screened for β -lactamase genes (except isolates from Vietnam 2017 and one Vietnam site in 2018, Enterobacterales from one site in Taiwan in 2018, and a small number of other isolates, which were not available for molecular characterization and were not included in the denominators for carbapenemase rate the calculations) [4].

Figure 1. Species distribution among all gram-negative isolates (n=6925) collected from ICU patients

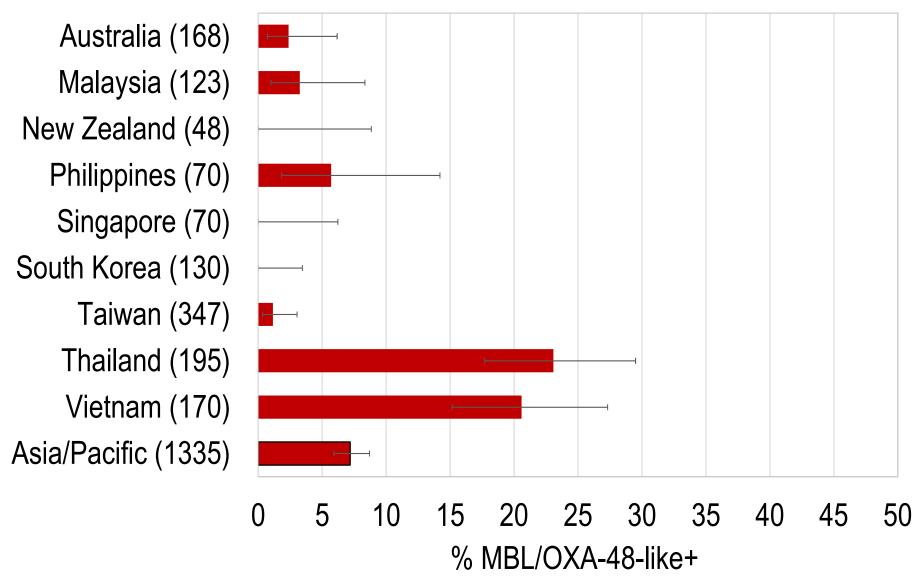
Table 1. Antimicrobial susceptibility of *K. pneumoniae*^a

		% Susceptible ^b								
Country	n	IMI/REL	IMI	FEP	CAZ	ATM	P/T	CIP	AMK	
Australia	173	97.1	96.0	92.5	92.5	91.9	93.6	90.8	98.8	
Malaysia	123	95.9	91.9	61.8	60.2	60.2	75.6	68.3	99.2	
New Zealand	49	98.0	98.0	85.7	87.8	85.7	93.9	83.7	98.0	
Philippines	70	92.9	85.7	75.7	65.7	70.0	75.7	54.3	97.1	
Singapore	70	100	97.1	90.0	91.4	88.6	87.1	81.4	98.6	
South Korea	130	98.5	97.7	64.6	59.2	63.9	70.8	50.0	94.6	
Taiwan	368	97.6	85.6	69.0	60.1	64.7	66.9	52.2	92.4	
Thailand	195	79.0	78.0	45.1	42.6	44.1	56.4	39.5	97.4	
Vietnam	293	76.5	67.9	43.3	44.4	43.7	51.9	33.5	80.2	
Asia/Pacific	1487	90.8	85.0	64.4	61.2	62.6	69.2	55.0	92.9	

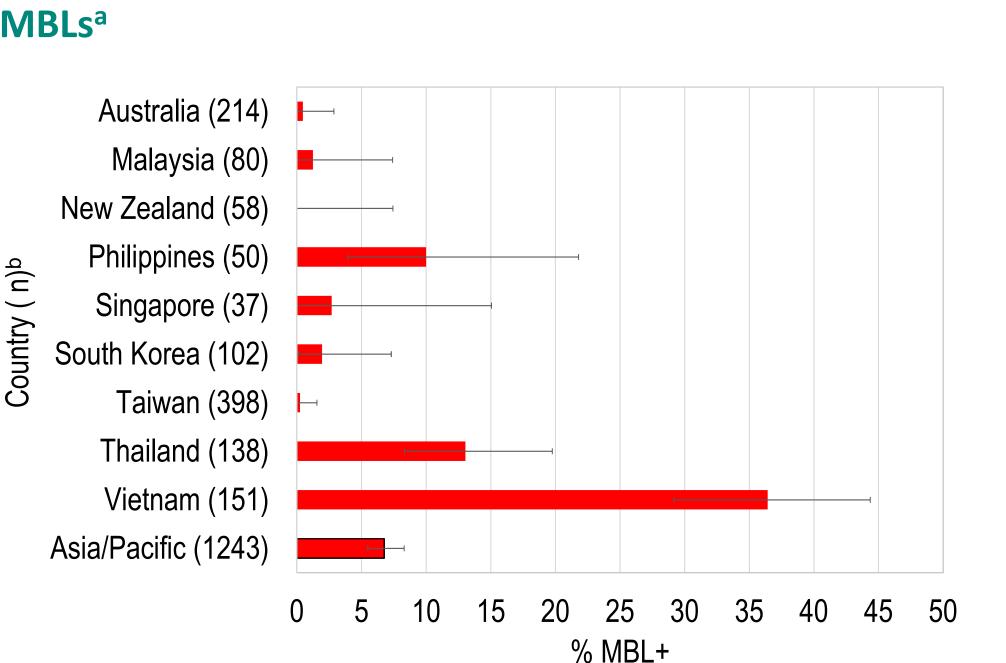

^aShowing individually only countries with \geq 20 isolates; Hong Kong not shown (n=16). ^bSusceptibility values ≥90% are shaded green. Results for colistin are not shown because Enterobacterales are no longer considered susceptible to colistin per 2020 CLSI guidelines. IMI, imipenem; REL, relebactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; P/T, piperacillin-tazobactam; CIP, ciprofloxacin; AMK, amikacin


Table 2. Antimicrobial susceptibility of *P. aeruginosa*^a

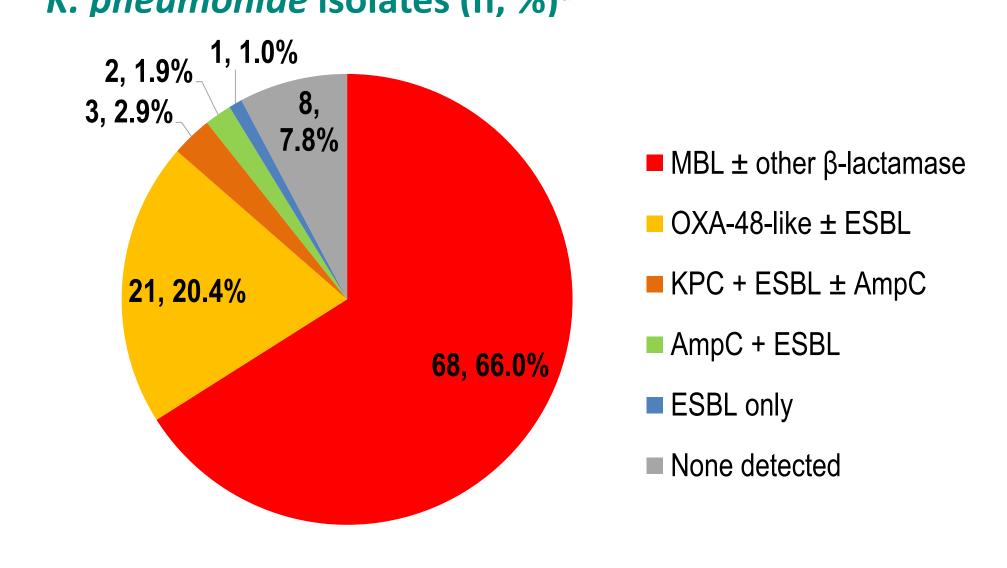
		% Susceptible ^b								
Country	n	IMI/REL	IMI	FEP	CAZ	ATM	P/T	CIP	AMK	
Australia	214	95.3	78.5	88.8	83.2	72.9	79.4	86.0	99.1	
Malaysia	80	95.0	77.5	83.8	78.8	70.0	75.0	87.5	97.5	
New Zealand	58	100	81.0	82.8	82.8	69.0	84.5	91.4	100	
Philippines	50	82.0	64.0	74.0	72.0	60.0	76.0	54.0	92.0	
Singapore	37	94.6	64.9	81.1	75.7	62.2	67.6	78.4	100	
South Korea	102	83.3	56.9	61.8	60.8	42.2	46.1	52.9	95.1	
Taiwan	398	96.2	75.4	77.6	76.6	62.1	67.3	76.9	98.5	
Thailand	138	77.5	59.4	70.3	67.4	56.5	62.3	71.7	85.5	
Vietnam	217	63.1	44.7	53.0	56.2	42.9	59.9	40.1	64.1	
Asia/Pacific	1309	86.8	66.9	73.6	72.0	58.9	67.2	69.9	91.1	

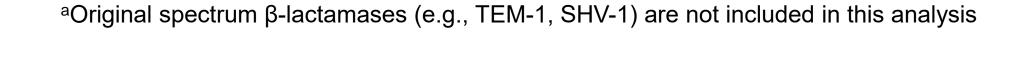

^aShowing individually only countries with \geq 20 isolates; Hong Kong not shown (n=15). ^bResults for colistin are not shown because *P. aeruginosa* are no longer considered susceptible to colistin per 2020 CLSI guidelines.

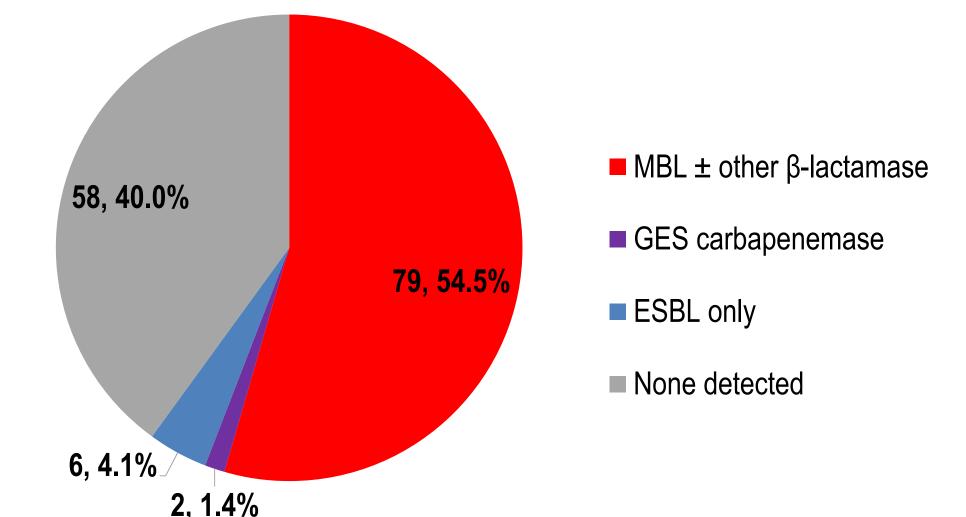
IMI, imipenem; REL, relebactam; FEP, cefepime; CAZ, ceftazidime; ATM, aztreonam; P/T, piperacillin-tazobactam; CIP, ciprofloxacin; AMK, amikacin



metallo-β-lactamases **carbapenemases**^a


^aShowing individually only countries with \geq 20 isolates; Hong Kong not shown (n=14). bOnly isolates available for molecular characterization were included in the denominators


Figure 6. Proportion of *P. aeruginosa* isolates carrying **MBLs**^a


^aShowing individually only countries with ≥ 20 isolates; Hong Kong not shown (n=15). bOnly isolates available for molecular characterization were included in the denominators S. Lob¹, M. Hackel¹, W. Chen², Y. Khoo³, K. Balwani⁴, K. Young⁵, M. Motyl⁵, D. Sahm¹

¹IHMA, Schaumburg, IL, USA ²MSD, Taipei, Taiwan ³MSD, Petaling Jaya, Malaysia ⁴MSD, Singapore ⁵Merck & Co., Inc., Kenilworth, NJ, USA

Acquired **B**-lactamases detected in 145 Figure 7. **IMI/REL-nonsusceptible** molecularly characterized P. aeruginosa isolates (n, %)^a

^aIntrinsic AmpC β-lactamases common to *P. aeruginosa* are not included in this analysis

Results Summary

- Among all isolates collected from ICU patients, the 3 most common species collected were K. pneumoniae, E. coli, and P. aeruginosa (Figure
- The most common source of the collected K. pneumoniae and P. aeruginosa isolates was lower respiratory tract infections (Figures 2 and 3).
- The proportion of IMI/REL-susceptible *K. pneumoniae* ranged from <80% in Thailand and Vietnam to >92% in 7 countries (Table 1). Of the tested comparators, only amikacin exceeded the activity of IMI/REL in some countries. For the region overall, the activity of the tested comparator β-lactams was 6-30 percentage points lower than IMI/REL (91%) susceptible).
- Lower susceptibility to IMI/REL correlated with higher proportions of isolates carrying MBL and/or OXA-48-like carbapenemases (23% and 21% in Thailand and Vietnam, respectively), which REL does not inhibit (Figure
- Overall in the region, 66% of molecularly characterized IMI/RELnonsusceptible K. pneumoniae isolates carried MBL and 20% carried OXA-48-like carbapenemases (Figure 5).
- The proportion of IMI/REL-susceptible *P. aeruginosa* ranged from 63% in Vietnam and 78% in Thailand to >94% in 5 countries (Table 2), again with correspondingly higher MBL rates in Thailand (13%) and Vietnam (36%) than elsewhere (Figure 6). The regional susceptibility rates for the comparator β-lactams were 13-28 percentage points lower than for IMI/REL (87% susceptible).
- Among molecularly characterized IMI/REL-nonsusceptible P. aeruginosa, over half carried MBL (Figure 7).

Conclusions

IMI/REL was active against 91% of K. pneumoniae and 87% of P. aeruginosa from ICU patients in Asia/Pacific overall, with higher activity in countries with lower prevalence of MBL or OXA-48-like carbapenemases. IMI/REL provides a potential treatment option for ICU patients in Asia/Pacific with infections caused by K. pneumoniae and P. aeruginosa, which is especially important in light of the reduced activity of commonly used β -lactams against the studied ICU isolates.

References:

- 1. Clinical and Laboratory Standards Institute. *Methods for Dilution Antimicrobial Susceptibility* Tests for Bacteria That Grow Aerobically; Approved Standards – Eleventh Edition. CLSI document M07-Ed11. 2018. CLSI, Wayne, PA.
- 2. Clinical and Laboratory Standards Institute. *Performance Standards for Antimicrobial* Susceptibility Testing – 30th ed. CLSI Supplement M100. 2020. CLSI, Wayne, PA.
- 3. Clinical and Laboratory Standards Institute Subcommittee on AST Testing. January 2020 meeting minutes. https://clsi.org/meetings/ast-file-resources
- 4. Lob SH. Biedenbach DJ. Badal RE, Kazmierczak KM, Sahm DF. Antimicrobial resistance and resistance mechanisms of Enterobacteriaceae in ICU and non-ICU wards in Europe and North America: SMART 2011–2013. J Glob Antimicrob Resist 2015; 3: 190-7

Funding for this research was provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ USA. The authors thank all the participants in the SMART program for their continuing contributions to its SUCCESS.

IHMA 2122 Palmer Drive Schaumburg, IL 60173 USA www.ihma.com