Absence of Toxemia in *Clostridioides difficile* infection: Results from Ultrasensitive Toxin Assay of Serum

Rebecca Sprague¹, Karolyne Warny¹, Nira Pollock MD, PhD^{1,2}, Kaitlyn Daugherty¹, Qianyun Lin MD¹, Alice Banz PhD³, Aude Lantz³, Kevin W. Garey PharmD, MS⁴, Anne J. Gonzales-Luna PharmD, BCIDP⁴, Carolyn D. Alonso MD¹, Javier A. Villafuerte Galvez MD¹, Ciarán P. Kelly MD¹

¹Divisions of Gastroenterology, Department of Medicine, Beth Israel Deaconess Medical Center & Harvard Medical School, Boston, USA ³Department of Laboratory Medicine, Boston, USA ⁴BioMérieux, Marcy L'Etoile, France ⁵Department of Pharmacy Practice and Translational Research, University of Houston College of Pharmacy, Houston, USA

Background

- Clostridioides difficile infection (CDI) is the major cause of hospital-acquired bacterial infectious diarrhea, are
- In fulminant CDI, these toxins lead to systemic complications and extra-colonic manifestations consistent with sepsis or even toxemia. However, identification of toxemia in CDI patients is incredibly rare.
- We hypothesized that the rarity at which toxemia is detected in CDI may be due to very low concentrations of circulating toxin in the blood, below the limit of detection of commercially available toxin assays.

	4.0.0	
Variable	n = 169	
Demographic Information		
Age Median (IQR)	68 (54 - 78)	
Male Gender	90	53.3%
Race		
White	126	74.6%
African American	21	12.4%
Other	18	10.7%
Unknown	4	2.4%
Ethnicity		
Hispanic	9	5.3%
Not Hispanic	144	85.2%
Unknown	16	9.5%
Laboratory Results		
WBC (10 ³ cells/µL) Median (IQR)	11.5 (7.4 – 18.6)	
WBC ≥15 x 10 ³ cells/µL	61	36.1%
Creatinine (mg/dl) Median (IQR)	1.1 (0.8 – 1.9)	
Creatinine ≥ 1.5 mg/dl	61	36.1%
Albumin (g/dl) Median (IQR)	3 (2.5 – 3.	6) n = 152
Albumin ≤ 3 g/dl	73 (n = 152)	43.2%
027 / NAP1 / B1 strain	17	10.1%
Severe Clinical Outcomes - Total		
ICU admission	24	14.2%
Colectomy	1	0.6%
Death within 40 days	14	8.3%
Severe Clinical Outcomes – Attributed to CDI		
ICU admission	13	7.7%
Colectomy	1	0.6%
Death within 40 days	2	2.4%
Severity Classifications* n = 153		
IDSA Severe	90	74.4%
ESCMID Severe	93	76.9%
Zar et al Severe	73	60.3%
Belmares et al Severe	23	19.0%

Table 1. Demographics, Baseline Laboratory Values, and Clinical Outcomes for the cohort.

caused by Toxin A (TcdA) and Toxin B (TcdB), two protein exotoxins secreted by pathogenic strains of the bacteria.

Results

- in paired stool.

Figure 1. Comparison of TcdA and TcdB concentrations, as measured by Simoa, in serum and stool. Clinical cutoffs are shown. Signals below these cut-offs are below backgrounds and considered negative.

Methods

- Eligible patients were enrolled in the study if they were NAAT positive and had acute diarrhea.
- Ultrasensitive toxin Single Molecule Array (Simoa) was performed on baseline stool samples, collected within 48 hours of initiating CDI treatment
- Simoa clinical cut-offs were defined by signal (mean plus two standard deviations) observed in sera from patients without CDI or C. difficile carriage:

TcdA = 15.0 pg/ml

Our cohort included 169 patients with a median age of 68 years (IQR 54-78), most with severe CDI and many with severe clinical outcomes attributed to CDI including ICU admission, colectomy or death. No TcdA or TcdB detected in the serum of our patient cohort despite a wide range of toxin concentrations

In 10.6% of serum samples, an artifact was observed in which a small percentage of beads demonstrated many bound antibody complexes with high enzymatic activity consistent with background signal related to binding of an unknown interfering molecule. Additional testing yielded negative results for the toxins.

TcdB = 26.7 pg/ml

Conclusions

- Circulating anti-toxin antibodies in blood may interfere with TcdA and/or TcdB detection. High anti-toxin antibody concentrations were associated with loss of Simoa signal, suggesting substantial inhibition of toxin measurements.
- Though earlier published findings reported on the presence of detectable toxin in the serum of patients with CDI, our results did not support this observation.
- There were several limitations of this study potentially contributing to these negative results.
 - Storage conditions of serum samples could have caused toxin degradation
 - Fulminant findings related to CDI are rare
 - Plausible that the circulating toxin levels still remain below Simoa's limit of detection.
- Although Simoa is highly sensitive for detection of picogram quantities of TcdA or TcdB, it was unable to detect either toxin in serum during CDI.

