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Introduction
• Epidemiological analyses of bacterial pathogens play an important role in 

the identification of potential outbreaks for infection control practices.
• Pulsed field gel electrophoresis (PFGE) has been considered the gold 

standard for epidemiological typing of most bacterial organisms.
– This method is time consuming, requires considerable technical 

expertise, specific equipment, and software.
– Interpretation of results can be subjective and may not be comparable 

across samples tested in different laboratories.
• Multilocus sequence typing (MLST) is a DNA sequencing-based typing 

method that uses 5 to 8 highly conserved genes and has been used for 
identifying clusters of various bacterial species.
– This method has been broadly used for many bacterial species, but no 

scheme has been developed for Serratia marcescens.

• Core genome (cg)MLST was developed to use whole genome sequencing 
(WGS) data and analysis of hundreds of genes to determine genetic 
relationships with greater accuracy than MLST or PFGE.

• We evaluated the utility of WGS ad hoc schemas to predict the genetic 
relatedness among clinical isolates of S. marcescens and compared this 
method with PFGE results.

Results
• Based on PFGE analysis, 19 isolates were classified into 10 pulsotypes, 

A through J, and 1 subtype, A1 (Figure 1).
– Five isolates from Japan belonged to 4 pulsotypes (C, D, H, and I).
– Three isolates from Mexico showed identical PFGE pattern (J).
– Four USA isolates belonged to three pulsotypes (B, E and G).
– Six isolates from France were related (A and A1).
– One isolate from Poland had an unrelated pattern to all other isolates (F).

• Figure 2A showed that isolates belonging to PFGE clusters A, C, G, and J 
had 100% similarity within the group and 96.3% similarity for the subtype 
A1 compared to isolates belonging to pulsotype A.

• Figure 2B, displaying the kWIP analysis that uses short k-mers for analysis, 
showed much lower percent homologies when compared to other methods.
– Analysis applying this method showed that isolates from cluster A 

ranged from 36.5 to 84.4% similarity, isolates from cluster G had 36.3% 
similarity, cluster J had 83.2 to 84.0% similarity, and cluster C isolates 
had a similarity only of 0.3%.

• Figure 2C, displaying the matrix generated using Dabos et al., 2019 
protocol that uses longer contigs for analysis, shows that isolates from 
clusters C and J had homology percentages ranging from 99.7% to 99.9%.
– Isolates from pulsotype A and subtype A1 displayed homology of 99.2% 

to 99.9%, with the exception of 1 isolate that displayed only 40.1% 
homology to the other isolates from this cluster.

– Isolates belonging to cluster G displayed only 39.1% similarity when 
using this method.

• The kWIP analysis (Figure 2B) did not show any isolates belonging to 
unique PFGE patterns, as similarity was >57% when compared to other 
isolates.

• The Dabos et al., 2019 protocol (Figure 2C) assigned homologies to 
clusters C, J, and F. Additionally, 1 isolate belonged to cluster G at >90% 
homology.
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Conclusions
• The comparison of PFGE and 2 WGS-based phylogenetic analysis of 

S. marcescens demonstrated that the method using short k-mers, kWIP, 
produced discrepant results from PFGE, which is still considered the gold-
standard method for epidemiologic typing.

• The method using longer contiguous sequences, the Dabos et al., 2019 
protocol, displayed better correlation with PFGE, with exception of 1 cluster. 
Additionally, this protocol displayed relatively high cut-off values that would 
have to be applied due to some high similarity observed among unrelated 
isolates.

• WGS-based methods for epidemiologic typing can be used for the analysis 
of S. marcescens, but some optimization is still required.

Materials and Methods
• A total of 19 S. marcescens clinical isolates from 5 countries were 

selected.
– These isolates were collected worldwide as part of the SENTRY 

Antimicrobial Surveillance Program and other JMI collections between 
2006–2011.

• Isolates were typed by PFGE and analyzed using the Bionumerics 
GelCompar II software (Applied Maths, Sint-Martens-Latem, Belgium).
– Genomic DNA was prepared in agarose blocks and digested with 

restriction endonuclease SpeI (New England Biolabs, Ipswich, 
Massachusetts, USA).

– Electrophoresis was performed on the CHEF-DR II (BioRad, Richmond, 
California, USA) with the following standard conditions: 0.5 x TBE, 1% 
agarose, 14°C and 5-60 second switch times at 200V.

– Isolates showing 100% similarity were scored as identical (assigned 
with a capital letter; e.g., A), ≥85% and <100% as genetically related 
(e.g. differed from baseline strain A by ≤3 PFGE bands, designated as 
subtype A1, A2, A3, etc.) and <85% as unrelated (e.g. differed from 
strain A by ≥4 bands, designated as strain B, C, D, etc.).

• WGS was performed using MiSeq (Illumina, San Diego, California, USA).
– Total genomic DNA was used as input material for library construction. 

DNA libraries were prepared using the Nextera XT™ library construction 
protocol and index kit (Illumina) and sequenced on a MiSeq Sequencer 
using MiSeq Reagent Kit v3 (600 cycle).

• Raw reads were used to a generate a similarity matrix and phylogenetic 
tree using kWIP.
– A matrix of pairwise distances amenable to qualitative comparison of 

genetic distances between samples within a population were estimated 
by calculating the weighted inner product (WIP) based on informational 
entropy across each analysis set.

– The R package ‘hclust’ was employed to generate a dendrogram for 
visual analysis.

• Assembled contigs were used to generate a similarity matrix and 
phylogenetic tree using ProgressiveMauve, Gubbins and RAxML (Dabos et 
al., 2019).
– Error-corrected reads (BayesHammer) were used to generate contigs 

using the de novo assembler SPAdes version 3.11.1 for each sample 
set independently. K-mer values were automatically selected by read 
length with settings to reduce the number of mismatches, producing a 
FASTA format file of contiguous sequences with the best N50 value.

– ProgressiveMauve and the Mauve-distributed script stripSubsetLCBs 
were used to extract all regions with a minimum length of 500 bp 
shared by all the contigs, generating a core genome alignment.

– Recombinant variable positions were removed with Gubbins and a 
maximum likelihood phylogeny was inferred for the alignment of non-
recombinant variable sites with RAxML using a general time-reversible 
(GTR) model incorporating a gamma distribution rate among sites. 

– The resulting dendrogram was visualized using the ETEToolkit.
• The matrices and dendrograms created by the 3 protocols were compared.

Figure 1 Gelcompar II analysis of PFGE patterns obtained from Serratia marcescens isolates

Figure 2 Comparison of PFGE and WGS- based analysis of Serratia marcescens isolates. 

Three methods are compared: (A) PFGE, (B) kWIP, and (C) Dabos et al., 2019. For each method, a similarity matrix (left) as well as corresponding dendrogram (right) are shown. Matrix rows and columns  
are labeled by JMI collection number and ordered by pulsotype (A through J). Matrices are colored by similarity: from red (high) to yellow (intermediate) to green (low). Dendrogram leaves are labeled with JMI collection  
number and colored according to pulsotype: red (A), black (B), orange (C), yellow (D), green (E), pink (F), cyan (G), light blue (H), dark blue (I), and purple (J).
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A.  PFGE

B.  kWIP

C. the Dabos et al.


