Utilization of methicillin-sensitive/resistant *Staphylococcus aureus* nares screen to decrease vancomycin and linezolid use in hospitalized patients with respiratory infections

Noor Zaidan, Pharm.D;¹ Rachel S. Britt, Pharm.D., BCIDP;¹ David Reynoso, MD, PhD;² Ariza Martinez, MS3;³ R. Scott Ferren, Pharm.D., BCIDP;¹ Department of Pharmacy, ²Department of Infectious Diseases, ³Department of Internal Medicine, UTMB Health, Galveston, TX

BACKGROUND

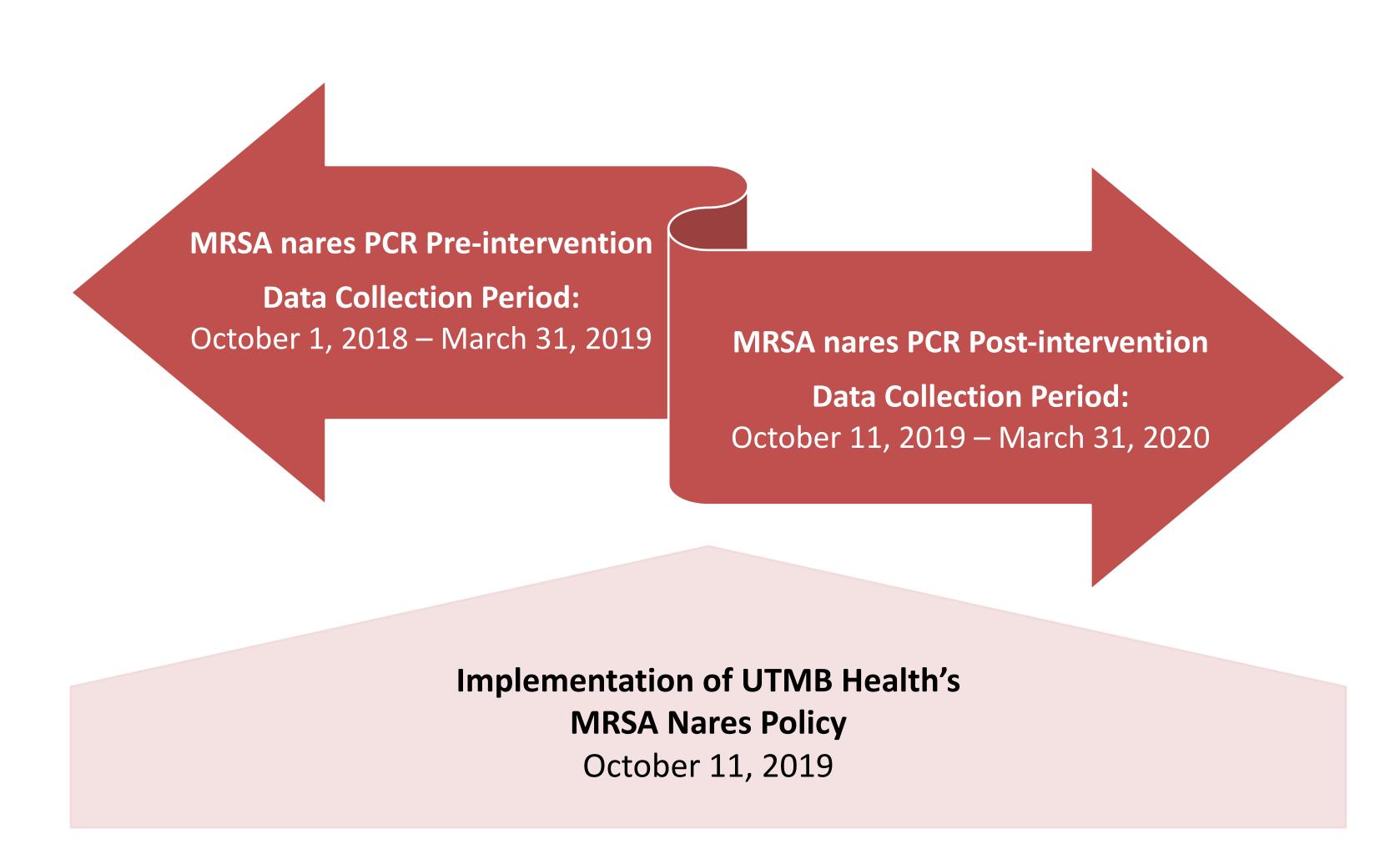
- Vancomycin and linezolid can be used for empiric gram-positive therapy due to their broad-spectrum activity against *Streptococcus*, *Enterococcus*, and *Staphylococcus* species, including methicillin-resistant *Staphylococcus aureus* (MRSA)¹
- Current Infectious Diseases Society of America (IDSA) guidelines recommend rapid initiation of empiric therapy and subsequent de-escalation once microbiological cultures become available with improved clinical response²
- Due to conventional culture methods requiring up to 96 hours to obtain the result, clinicians may be hesitant to de-escalate empiric antimicrobial coverage without concrete microbiological data³
- MRSA nares polymerase chain reaction (PCR) provides rapid molecular surveillance and detection of MRSA, which commonly colonizes the nares³
- Data has shown efficacy of the MRSA nares screen due to its very high negative predictive value ranging from 95.2% to 99.2%, which allows for de-escalation of empiric gram-positive coverage in patients with a negative nares screen³
- Pharmacist-driven MRSA nares screening protocols have shown decreases in duration of vancomycin therapy and incidence of acute kidney injury (AKI)⁴

PURPOSE

- Enhance antimicrobial stewardship practices
- Decrease duration of empiric antimicrobial coverage
- Decrease risk of resistance and adverse effects
- Overutilization of empiric gram-positive coverage is associated with several concerns
- Potential for development of resistance
- Adverse effects such as nephrotoxicity and thrombocytopenia
- Selective pressure on Enterococcus species

OBJECTIVES

• To assess the impact of a pharmacist-driven MRSA nares screening protocol on duration of vancomycin and linezolid therapy


Table 1. Primary and Secondary Objective Data Collection Points

rable 1. I filliarly aria secondary objective bata concettori i onits				
Primary objective	 Duration of vancomycin and linezolid therapy in hours 			
Secondary objectives	 30-day all-cause mortality 30-day readmission rate Hospital length of stay (LOS) Intensive care unit (ICU) LOS Number of vancomycin levels Incidence of AKI Direct medication cost 			

METHODS

Table 2. Study Overview

Study Design	Retrospective and prospective chart review			
Data Collection	October 1, 2018 – March 31, 2020			
Study Period	 Pre-intervention group: October 1, 2018 – March 31, 2019 Post-intervention group: October 11, 2019 – March 31, 2020 			
Post- Intervention Group	 Pharmacist recommendation to de-escalate empiric gram-positive coverage in patients with a respiratory infection and negative MRSA nares screen, if clinically appropriate 			
Inclusion Criteria	 All patients 18 years of age or older admitted to Jennie or John Sealy hospitals Medication orders for empiric vancomycin or linezolid for respiratory indication(s) Resulted negative MRSA nasal PCR screen 			
Exclusion Criteria	 Patients with medication orders for extrapulmonary indications Incarcerated patients of the Texas Department of Criminal Justice 			

RESULTS

Table 3. Baseline Characteristics

	Pre-MRSA nasal PCR (n = 50)	Post-MRSA nasal PCR (n = 57)	P-value
Age – years ± SD ¹	65 ± 14.6	62.6 ± 16.4	0.5915
Male sex – no. (%)	34 (68)	30 (53)	0.1057
Charlson Comorbidity Index, no. (IQR) ²	4 [2-6]	4 [2-6]	0.8667
ICU – no. (%)	12 (24)	49 (86)	< 0.0001

¹Expressed as mean ²Expressed as median

RESULTS (cont.)

Table 4. Primary and Secondary Outcomes

No. (IQR)	Pre-MRSA nasal PCR (n = 50)	Post-MRSA nasal PCR (n = 57)	P-value
Duration of therapy (DT) – hours ²	38.2 [24-73]	30.9 [23.3-60.15]	0.601
Number of vancomycin levels ²	1 [0-1]	1 [0-1]	0.8488
Total amount of vancomycin received (mg) ²	4250 [1875-7000]	2750 [1750-5000]	0.1217
AKI – no. (%)	10 (20)	8 (14)	0.4105
ID consulted – no. (%)	10 (20)	5 (8.8)	0.0951
LOS – days ²	6 [4-7]	12 [9-18]	< 0.0001
ICU LOS – days ²	3 [2-4]	7 [4-11]	0.0019
30-day Readmission – no. (%)	19 (38)	10 (18)	0.0175
30-day all-cause mortality – no. (%)	3 (6)	16 (28)	0.0029
Inpatient order cost (dollars) ²	78.2 [31.4-125.5]	33.4 [16.3-67.8]	0.0031

²Expressed as median

Table 5. Subgroup Analysis – Accepted and Rejected Recommendations

No. (IQR)	Pre-MRSA nasal PCR (n = 50)	Post-MRSA PCR Recommendation Accepted (n = 47)	Post-MRSA PCR Recommendation Rejected (n = 10)	P-value
Duration of therapy (hours) ²	38.2 [24-73]	24.8 [21.4-46.5]	116.4 [85.7-133.2]	< 0.0001
Number of vancomycin levels ²	1 [0-1]	1 [0-1]	2 [1.75-3]	0.0008
Total amount of vancomycin received (mg) ²	4250 [1875-7000]	2250 [1500-4250]	6000 [4500-10625]	0.0012
Inpatient order cost (dollars) ²	78.2 [31.4-125.5]	31.4 (15.6-56.8)	60 [26.2-160.7]	0.0025

²Expressed as median

CONCLUSION

- A pharmacist-driven MRSA nares screening policy did not affect duration of grampositive therapy, incidence of nephrotoxicity, or total amount of vancomycin/linezolid received overall
- When pharmacist-driven de-escalation recommendations were accepted, duration of therapy and total amount of vancomycin received significantly decreased compared to the pre-intervention period

REFERENCES

- Burnell J, Valetin-Torres M, Smith SM, Eng RHK. Antimicrobial Agents and Chemotherapy. 2017;61(4).
- American Thoracic Society, Infectious Diseases Society of America. AM J Respir Crit Care Med. 20065;171:388-416.
 Willis C, Allen B, Tucker C, Rottman K, Epps K. American Journal of Health-System Pharmacy. 2017;74(21):1765-1773.
- 4. Baby N, Faust AC, Smith T, Sheperd LA, Knoll L, Goodman. *Antimicrobial Agents and Chemotherapy*.2017;61(4).

Authors of this presentation have no disclosures concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation.