

# MASSACHUSETTS MGH GENERAL HOSPITAL DEPARTMENT OF PHARMACY

# Background

- Incidence of invasive fungal infections has increased in the past two decades, contributing to more widespread use of echinocandins.<sup>1</sup>
- Echinocandin overuse is linked to increasing prevalence of nonalbicans Candida species (spp.) infections and resistance.<sup>2-3</sup>
- Instituting a clinical pathway can guide clinicians on appropriate use of echinocandins to mitigate prolonged or inappropriate courses once a confirmed diagnosis is made.<sup>1</sup>
- Micafungin, our institution's preferred echinocandin, requires infectious diseases (ID) approval at the time of initiation.
- An echinocandin "time-out" initiated by an antimicrobial stewardship team member can prompt reassessment of the continuing need for echinocandin therapy versus appropriate de-escalation.<sup>4-5</sup>

### Purpose

Evaluate the impact of an antimicrobial stewardship program (ASP)initiated micafungin time-out (MTO) on antifungal appropriateness as guided by a clinical pathway.

# Endpoints

**Primary:** Assess the appropriateness of antifungal therapy at days 1 and 5 pre- and post-implementation of an ASP-driven MTO pathway.

**Secondary:** Describe the ASP-driven interventions and the intervention acceptance rate.

# Methods

**Study Design:** Single center quasi-experimental study evaluating antifungal appropriateness pre-MTO (2019) and post-MTO implementation (2020). Assessment was guided by a clinical pathway.



# **Evaluation of the Impact of a Micafungin Time-Out** Pathway for Hospitalized Patients

Kelsey N. Williams, PharmD; Ramy H. Elshaboury, PharmD; Ronak G. Gandhi, PharmD; Meagan L. Adamsick, PharmD; Alyssa R. Letourneau, MD; Molly L. Paras, MD; Monique R. Bidell, PharmD Massachusetts General Hospital, Boston, MA

#### **Table 1: Patient Demographics\***

| Male <sup>#</sup>                             |  |
|-----------------------------------------------|--|
| Age, median (IQR)                             |  |
| <b>Comorbid conditions</b>                    |  |
| <ul> <li>Diabetes mellitus</li> </ul>         |  |
| <ul> <li>COPD</li> </ul>                      |  |
| <ul> <li>Heart failure<sup>#</sup></li> </ul> |  |
| <ul> <li>Cirrhosis<sup>#</sup></li> </ul>     |  |
| Renal replacement therapy                     |  |
| <ul> <li>Malignancy</li> </ul>                |  |
| <ul> <li>Solid organ transplant</li> </ul>    |  |
| <ul> <li>Bone marrow transplant</li> </ul>    |  |
| Critical care admission                       |  |
| Intubated                                     |  |
| <ul> <li>Vasopressors</li> </ul>              |  |
| Oncology admission                            |  |
| Medicine admission                            |  |
| Infectious diseases consult                   |  |
| Mortality                                     |  |
|                                               |  |

# Implementation of a micafungin time-out, guided by a clinical pathway, increased antifungal appropriateness by 18 and 26% on days 1 and 5 of therapy, respectively.

#### **Table 2: Assessment Criteria for Micafungin U**

| Invasive | Candidiasis | <b>Risk Factors</b> |  |
|----------|-------------|---------------------|--|
|          |             |                     |  |

\* n (%) unless otherwise specified. # p<0.05

| Central venous catheter    |
|----------------------------|
| Total parenteral nutrition |
| Gastrointestinal surgery   |
| Hematologic malignancy     |
| Renal replacement therapy  |

- ANC <500</p>
- Solid organ transplant
- Bone marrow transplant
- Implanted prosthetic device
- Immunosuppressive therapy

Ventilated

History of Candida spp. infection(s) in ≤12 months Azole use in ≤4 weeks

- History of Candida spp. resistant infection
- LFT elevations >3x ULN

QTc elevations >500 Febrile neutropenic ≥4 days OR hemodynamically ur OR persistent shock despite antibiotics ≥48 hours None

\* n (%) unless otherwise specified. All p>0.05

# Results

| Pre-MTO (2019)<br>(n=50) | Post-MTO (2020)<br>(n=50) |
|--------------------------|---------------------------|
| 26 (52)                  | 37 (74)                   |
| 61 (51-68)               | 65 (44-69)                |
|                          |                           |
| 11 (23)                  | 13 (31)                   |
| 4 (9)                    | 4 (10)                    |
| 12 (26)                  | 6 (14)                    |
| 9 (19)                   | 3 (7)                     |
| 11 (22)                  | 10 (20)                   |
| 26 (55)                  | 27 (64)                   |
| 12 (26)                  | 8 (19)                    |
| 8 (16)                   | 7 (17)                    |
| 14 (28)                  | 15 (30)                   |
| 8 (57)                   | 12 (80)                   |
| 10 (71)                  | 13 (87)                   |
| 14 (28)                  | 19 (38)                   |
| 22 (44)                  | 16 (32)                   |
| 41 (82)                  | 36 (72)                   |
| 19 (38)                  | 19 (38)                   |
|                          |                           |

| se According | to Pathway*              |                           |
|--------------|--------------------------|---------------------------|
|              | Pre-MTO (2019)<br>(n=50) | Post-MTO (2020)<br>(n=50) |
|              |                          |                           |
|              | 33 (66)                  | 32 (64)                   |
|              | 18 (36)                  | 17 (34)                   |
|              | 12 (24)                  | 10 (20)                   |
|              | 12 (24)                  | 14 (28)                   |
|              | 15 (30)                  | 19 (38)                   |
|              | 11 (22)                  | 10 (20)                   |
|              | 11 (22)                  | 14 (28)                   |
|              | 12 (24)                  | 8 (16)                    |
|              | 8 (16)                   | 7 (14)                    |
|              | 7 (14)                   | 3 (6)                     |
|              | 35 (70)                  | 36 (72)                   |
|              | 9 (18)                   | 12 (24)                   |
|              | 6 (12)                   | 7 (14)                    |
|              | 15 (30)                  | 12 (24)                   |
|              | 1 (2)                    | 2 (4)                     |
|              | <u> </u>                 | 9 (18)                    |
|              | / (14)                   | 2 (4)                     |
| nstable      | 22 (44)                  | 27 (54)                   |
|              | 1 (2)                    | 3 (6)                     |



| 50 |   |
|----|---|
| 40 |   |
| 30 |   |
| 20 |   |
| 10 |   |
| 0  |   |
|    | P |

Overall, 23 ASP interventions were performed post-MTO and pathway implementation with 19 (83.0%) executed successfully.

• ASP interventions post-MTO and pathway implementation increased overall antifungal appropriateness at day 1 and at day 5:

 This study demonstrated that ASP review of micafungin orders early in the course of treatment utilizing a MTO pathway optimized antifungal use and promoted antifungal stewardship.

3. Micallef C, Aliyu SH, et al. J Antimicrob Chemother 2015;70:1908-1911. 4. Pappas P, Kauffman C, Andes D, et al. Clin Infect Dis 2016;62(4):e1-50. 5. Thom KA, et al. Clin Infect Dis. 2019;68:1581-1584.

Authors of this presentation have no financial or personal relationships with commercial entities to disclose that may have a direct or indirect interest in the subject matter of this presentation.

# HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

# **Results (continued)**



- Day 1: 76% (n=38) to 94% (n=47) (p=0.47)
- Day 5: 66% (n=25) to 92% (n=35) (p=0.33)

## Conclusion

### References

1. Van Engen A, Casamayor M, et al. ClinicoEconomics and Outcomes Research 2017;9:763-774.

2. Carr A, Colley P, et al. Proc 2018;31(1):30-34.

# Disclosures