

Post-liver transplant antimicrobial utilization after the expansion of a pharmacist-led antimicrobial stewardship program

Kee Gales, PharmD; Justin Wrin, PharmD, BCPS, BCIDP; Catherine Pennington, MS, PharmD, BCPS Indiana University Health, Indianapolis, Indiana

Outcome Measures

Introduction

- In 2018, over 36,000 transplant procedures were performed in the United States¹
- Transplant recipients are at high risk of developing infections due to²:
 - Invasive surgical procedures
 - Induced immunosuppression
 - Exposure to nosocomial pathogens
 - Diminished signs of infection
- Clinical data on the effect of antimicrobial stewardship programs (ASPs) on transplant recipients are sparse, but data from other immunocompromised populations suggest benefit from ASPs³
- In December 2016, Indiana University (IU) Health expanded their ASP from 1 to 3 infectious disease (ID) pharmacists
- More than 150 liver transplant procedures occur every year at IU Health University Hospital
- The effect of this expanded ASP on the liver transplant population is unknown

Objective

 To assess the impact of an expanded ASP on antimicrobial use within post-liver transplant patients

Methods

Design

 Retrospective cohort study that compared antimicrobial use and patient outcomes before and after the ASP expansion (2016 vs. 2018)

Subjects

 Patients ≥ 18 years old who were hospitalized and had received a liver transplant during that hospitalization

Inclusion Criteria

• Patients receiving antimicrobial therapy with one or more of the following agents:

Antimicrobials studied			
Amoxicillin-clavulanate (AMC)	Meropenem (MEM)		
Ampicillin-sulbactam (SAM)	Micafungin		
Cefepime (FEP)	Moxifloxacin (MXF), IV and PO		
Ceftriaxone (CRO)	Piperacillin-tazobactam (TZP)		
Ciprofloxacin (CIP), IV and PO	Vancomycin (VA), IV		

Exclusion Criteria

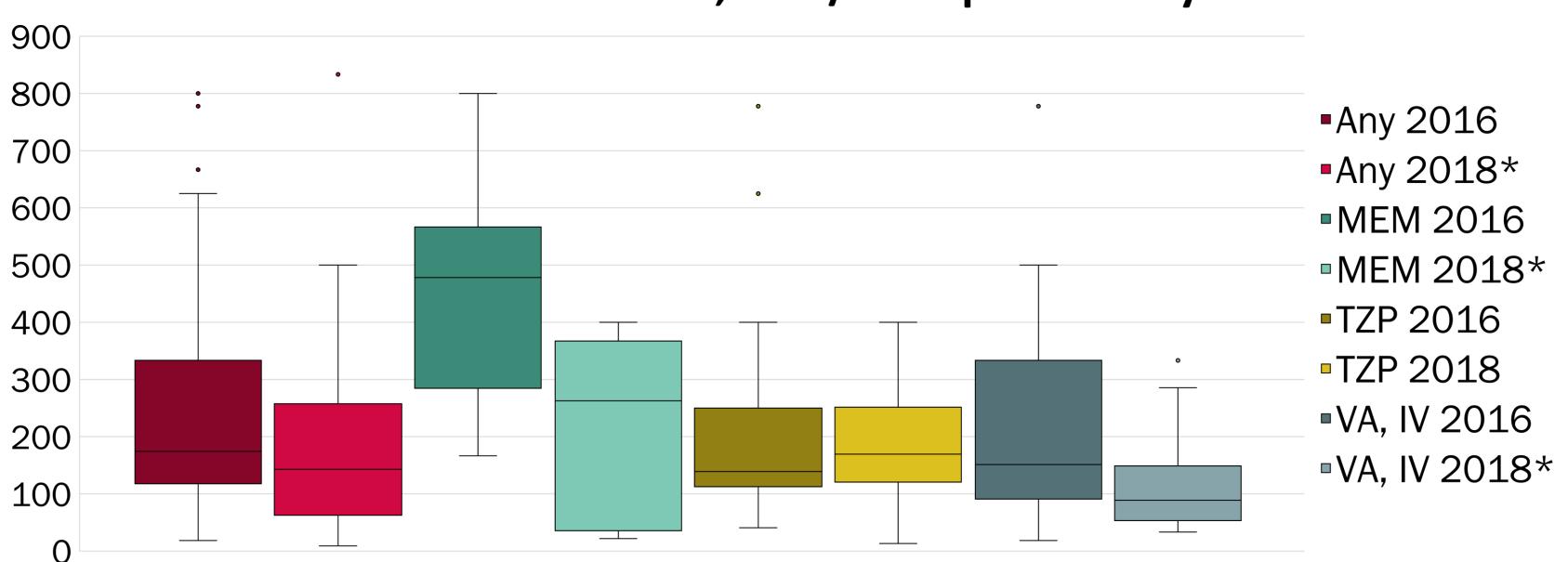
- Multivisceral transplant patients
- Patients surviving < 72 hours after transplant
- Documented active infection prior to liver transplantation

1

Primary

- Number of patients that received ≥1 dose
- Difference in the aggregate days of therapy (DOT) in patients that received ≥1 dose

Secondary


- Difference in the individual DOT
- Graft survival
- Patient survival
- Rates of ID consults
- Multidrug resistant organism (MDRO) rates

Results

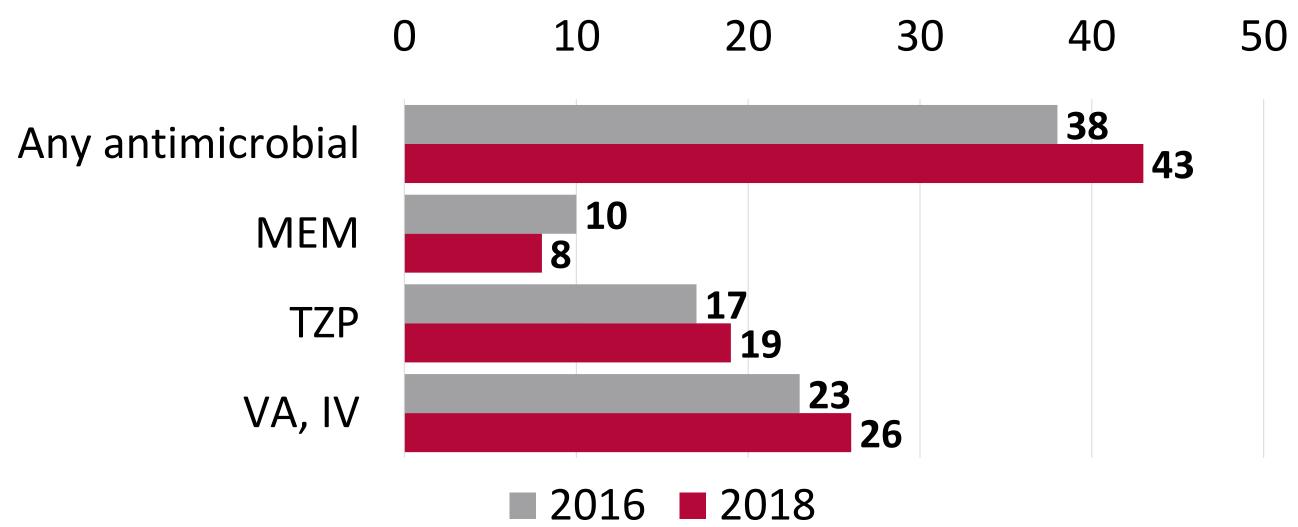
Antimicrobial use, DOT/1000 patient-days

	2016	2018	Difference (95% CI)
Any antimicrobial, median (IQR)	174 (118 to 333)	143 (63 to 258)	49 (8 to 83)
MEM, median (IQR)	478 (285 to 567)	263 (36 to 367)	198 (66 to 452)
TZP, median (IQR)	139 (112 to 250)	170 (125 to 250)	-6 (-80 to 78)
VA, IV, median (IQR)	151 (91 to 333)	89 (53 to 149)	58 (2 to 132)

Antimicrobial use, DOT/1000 patient-days

*Indicates a significant difference compared to the respective 2016 cohort data

Secondary Outcomes


	2016 (n=134)	2018 (n=134)	p-value
1-year graft survival, n (%)	130 (97.0)	125 (93.2)	0.255
1-year patient survival, n (%)	130 (97.0)	127 (94.8)	0.540
ID consults, n (%)	2 (1.5)	12 (9.0)	0.011
Total MDROs, n (%)	21 (15.7)	11 (8.2)	0.089

Results (cont.)

Baseline Characteristics

	2016 (n=134)	2018 (n=134)	p-value
Age in years, median (IQR)	58 (49 to 64)	58 (51 to 64)	0.584
Male, n (%)	82 (61.1)	93 (69.4)	0.199
DCD organ donations, n (%)	17 (16.7)	30 (22.4)	0.037
Length of stay (days), median (IQR)	9.5 (8.0 to 15.0)	10.5 (8.0 to 19.0)	0.474
Indication for transplant, n (%) NASH Ethanol Hepatitis C Other	46 (34.3) 23 (17.2) 32 (23.9) 33 (24.6)	42 (31.3) 30 (22.4) 26 (19.4) 36 (26.9)	0.603
Use of rATG in induction, n (%) rATG ≥ 4.0 mg/kg rATG >0 and <4 mg/kg No rATG used	112 (83.6) 22 (16.4) 0	89 (66.4) 25 (18.7) 20 (14.9)	<0.001
MELD score, median (IQR)	20 (17 to 24)	22 (18 to 27)	0.010

Number of patients that received ≥1 dose

Discussion

- This study expands upon the current literature of antimicrobial use in immunocompromised populations
- In post-liver transplant patients, an expanded ASP contributed to shorter broad-spectrum antimicrobial durations in patients that received at least 1 dose
- There was less MEM and VA use in patients who received at least 1 dose in 2018
- There were more ID consults in 2018
- Similar rates of survival and length of stay
- Future studies should focus on transplanted patients up to 1-year post-operation and on other organ transplant patients

REFERENCES

- 1. U.S. Department of Health and Human Services: Organ Procurement and Transplantation Network: National Data. https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/. Accessed August 13, 2019.
- 2. Fishman JA. Infection in Organ Transplantation. Am J Transplant. 2017;17(4):856-879.
- Paskovaty A, Pastores SM, Gedrimaite Z, Kostelecky N, Riedel ER, Seo SK. Antimicrobial de-escalation in septic cancer patients: is it safe to back down? Intensive Care Med. 2015;41(11):2022-2023.

 I have no real or potential conflicts of interest to disclose regarding this poster.

 IDWeek Poster Conference, October 2020