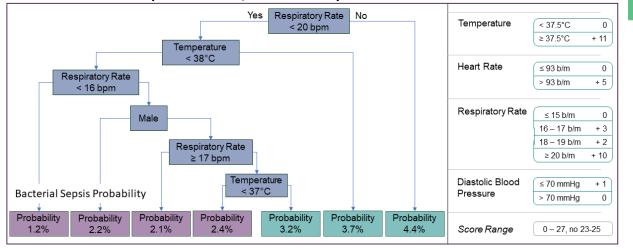
Detecting bacterial sepsis among allogeneic hematopoietic cell transplant (aHCT) recipients with population-specific bedside tools

Margaret L Lind, Stephen J Mooney, Marco Carone, Benjamin Althouse, Catherine Liu, Steven A Pergam, Amanda I Phipps

BACKGROUND & OBJECTIVES

Background p.

- aHCT recipients are at in increased risk of developing and dying of sepsis
- Early and accurate sepsis treatment decreases mortality
- Diagnosing sepsis among aHCT recipients remains challenging
 - 1. Sepsis presents differently in posttransplant patients
 - 2. Transplantation complications can present similarly to sepsis
- Existing bedside tools were developed among general population patients
- Existing tools perform poorly to moderately and their limitations may be exacerbated among aHCT recipients


p. **Objectives (Aims)**

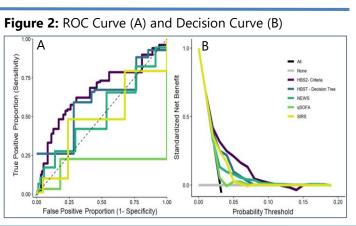
Goal: Develop bedside bacterial sepsis prediction tools that provide decision support at the time of culture collection for aHCT

Aim 1: Develop two prediction tools: Score - HCT Bacterial Sepsis Score (HSB2), Decision Tree - HCT Bacterial Sepsis Tree (HSBT)

Aim 2: Compare the estimated predictive abilities of HBS2 and HBST to Systemic Inflammatory Response Syndrome (SIRS), quick Sequential Organ Failure Assessment (gSOFA), National Early Warning Score (NEWS)

DEVELOPED TOOLS (HBS2- score, HBST – tree)

STUDY OVERVIEW	Study Period & Location : 2010-2019, Seattle Cancer Care Alliance Population : Allogeneic HCT recipients with \geq 1 potential infection (PI Cohort : All potential infections that occurred within the 1 st 100 days Model/Validation Data : Randomly selected 70%/30% of data (rando		
OUTCOME & PREDICTORS	Outcome: Bacterial sepsis - blood culture confirmed gram-negative, Potential Predictors: Bedside examination factors frequently (≥65%) hours prior/ 2 hours following culture collection)- measurement close		
MODEL DEVELOPMENT	 Step 1: Determined optimal flexibility (size) Estimated cvAUC for all models (HBS2: logistic regression; HBST: classification tree) Selected best cvAUC relative to size Step 2: Identified predictors in best performing (cvAUC) model of optimal size Step 3: Developed tools in full model dataset Step 4: Estimated HSB2 scores as 10*betas * cvAUC (cross validated area under the curve) 		
TOOL EVALUATION	Numerically : Area under the curve (AUC), sensitivity/specificities (qSC Visually : Receiver Operating Characteristic (ROC) curve and Decision * Optimal cut points identified using Youden Method		

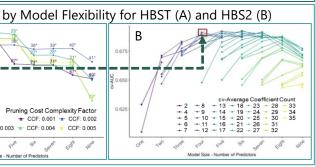

RESULTS -

Patient Characteristics

- 1571 aHCT had7755 PIs, 238 sepsis events
- White (73%), male (57%), 135 (8.6%) died

Tool Performance

	AUC	Sensitivity	Specificity
HBS2	71.1 (64.3, 77.9)	60.0 (47.1, 72.0)	74.0 (72.1, 75.8)
HSBT	70.0 (63.7, 67.2)	61.5 (48.6, 73.3)	71.5 (69.6, 73.4)
SIRS	64.7 (57.6, 71.9)	53.8 (41.0, 66.3)	76.0 (74.2, 77.8)
qSOFA	54.4 (48.8, 59.9)	3.1 (0.4, 10.7)	99.7 (99.3, 99.9)
NEWS	58.2 (50.5, 66.0)	40.0 (28.0, 52.9)	70.0 (68.1, 71.9)


Supported by National Center for Advancing Translational Sciences of the National Institutes of Health (TL1 TR002318), NHLBI grant 1F31HL154509-01, and NCI grant CA-15704

METHODOLOGY

SCHOOL OF PUBLIC HEALTH FPIDFMIOI UNIVERSITY of WASHINGTON

- Pls blood culture) post HCT omization done on the patient level)
- Staph. aureus, or Strep. species bacteremia 6) captured within measurement window (24 sest in time to culture collection used

OFA/SIRS 2+, NEWS 4+, HBS2/T optimal*) curve

CONCLUSION

Among aHCT recipients with PIs

- Our tools were better able to predict bacterial sepsis than existing tools
- HBS2 had higher clinical benefits than existing tools (Figure 2b)
- Using our bedside tools could improve early detection and treatment of bacterial sepsis