

Activity of Eravacycline against Staphylococci Isolated from Periprosthetic Joint Infections

200 1st St SW Rochester, MN 55905

schmidtmalan.suzannah@mayo.edu

507-284-5104

Georg Zhuchenko¹, Suzannah Schmidt-Malan¹, Robin Patel^{1,2}

¹Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, ²Division of Infectious Diseases, Department of Medicine Mayo Clinic, Rochester, MN

BACKGROUND

- Periprosthetic joint infections (PJIs)difficult to treat and costly
- Commonly caused by Staphylococcus aureus or Staphylococcus epidermidis¹
- Treatment often involves multiple surgeries, long term antibiotic therapy
- Eravacycline new tetracycline
- Improved anti-staphylococcal activity compared to tigecycline²
- Approved by the United States Food and Drug Administration (FDA) for complicated intraabdominal infection
- Aim: Determine in vitro activity of eravacycline against S. aureus and S. epidermidis isolated from PJI in the planktonic and biofilm states

Eravacycline

Figure. Chemical structure of eravacycline.3

METHODS

- 185 staphylococci isolated from patients with PJI, 1996-2018
- 38 methicillin-resistant *S. aureus* (MRSA)
- 64 methicillin-susceptible S. aureus (MSSA)
- 62 methicillin-resistant S. epidermidis (MRSE) and
- •21 methicillin-susceptible S. epidermidis (MSSE)
- Minimum inhibitory concentration (MIC) determined by broth micro dilution (range tested 0.06-64 µg/ml) according to CLSI guidelines^{4,5}
- Minimum biofilm bactericidal concentrations (MBBCs) determined with modification of Calgary biofilm method⁶
- Biofilms formed on pegged lids in trypticase soy broth
- Pegged lids rinsed in phosphate buffered saline (PBS); transferred to plates containing dilutions of eravacycline in cation-adjusted Mueller Hinton broth (CAMHB); incubated for 20-24h
- Pegged lids rinsed again in PBS and transferred to plates containing CAMHB and incubated for 24h

epidermidis

Susceptible

Resistant

Susceptible

 MBBC recorded as lowest concentration with no visible growth

RESULTS

- MIC_{50/90} (range) in μg/ml for MRSA, MSSA, MRSE, and MSSE: $0.125/0.125 (\leq 0.06-0.25),$ ≤0.06/0.125 (≤0.06-0.25), 0.125/1 $(\leq 0.06-2)$, and 0.25/1 ($\leq 0.06-1$), respectively (Table)
- MBBC_{50/90} (range) in μg/ml for MRSA and MSSA both 8/16 (4-16); for MRSE and MSSE, values were 4/16 (2-32) and 8/16 (2-32), respectively (Table)

DISCUSSION

- Using the EUCAST susceptible breakpoint of 0.25 µg/ml, 100% of isolates would be considered susceptible
- 54% would be considered susceptible using the FDA susceptible breakpoint of 0.06 µg/ml

CONCLUSIONS

• Eravacycline has low antistaphylococcal biofilm activity

REFERENCES

- 1. Pulido L, Ghanem E, Joshi A, Purtill JJ, Parvizi J. 2008. Periprosthetic joint infection: The incidence, timing, and predisposing factors. Clin Orthop Relat
- 2. Sutcliffe JA, O'Brien W, Fyfe C, Grossman TH. 2013. Antibacterial activity of eravacycline (TP-434), a novel fluorocycline, against hospital and community pathogens. Antimicrob Agents Chemother 57:5548-58.
- 3. Zhanel GG, Cheung D, Adam H, Zelenitsky S, Golden A, Schweizer F, Gorityala B, Lagacé-Wiens PR, Walkty A, Gin AS, Hoban DJ, Karlowsky JA. 2016. Review of eravacycline, a novel fluorocycline antibacterial agent. Drugs
- 4. CLSI. 2019. Performance standards for antimicrobial susceptibility testing. 29th ed. CLSI standard M100. Wayne, PA: Clinical and Laboratory Standards
- 5. CLSI. 2018. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. 11th Edition. CLSI standard M07. Wayne, PA: Clinical & Laboratory Standards Institute.
- 6. Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A. 1999. The Calgary biofilm device: New technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37:1771-6.

16

16

16

TABLE. MIC and MBBC values of Staphylococcus aureus and Staphylococcus epidermidis isolates studied.

	Number of isolates with the following MICs and cumulative percent (%)												
	Methicillin susceptibility	≤0.06	0.125	0.25	0.5	1	2	4	8	16	32	MIC ₅₀	MIC ₉₀
S. aureus	Resistant	14 (37)	20 (90)	4 (100)								0.125	0.125
	Susceptible	41 (64)	21 (97)	2 (100)								≤0.06	0.125
S. epidermidis	Resistant	14 (23)	19 (53)	11 (71)	11 (89)	5 (97)	2 (100)					0.125	1
	Susceptible	1 (5)	7 (38)	4 (57)	6 (86)	3 (100)						0.25	1
	Number of isolates with the following MBBC and cumulative percent (%)												
		≤0.06	0.125	0.25	0.5	1	2	4	8	16	32	MBBC ₅₀	MBBC ₉₀
S. aureus	Resistant							2 (5)	25 (71)	11 (100)		8	16

10 (16)

31 (62)

5 (29)

1(2)

1 (5)

13 (100)

14 (94)

8 (91)

4 (100)

2 (100)

41 (80)

12 (71)

5 (52)

© 2020 Mayo Foundation for Medical Education and Res