IDWeek 2020

1299

In Vitro-In Vivo Discordance with β-lactams against Metallo-β-lactamase-Producing Enterobacterales: **Implications for Susceptibility Testing**

Kamilia Abdelraouf, Sergio Reyes and David P. Nicolau Center for Anti-Infective Research & Development, Hartford Hospital, Hartford, CT

ABSTRACT (revised)

- Background: Using murine models of infection, we previously reported the potent in vivo activity of carbapenems against metallo-B-lactamase-producing Enterobacterales despite the observed resistance in vitro. In the current study, we examined the in vivo activity of cefepime human-simulated regimen against metallo-β-lactamase-producing Enterobacterales in a murine thigh infection model.
- Methods: A population of clinical isolates and isogenic engineered metallo-B-lactamase-producing Enterobacterales transformants expressing metallo-βlactamases but no detectable cefepime-hydrolyzing serine β-lactamases were utilized. KPC-producing isolates were included as positive controls. Cefepime, piperacillin-tazobactam and meropenem MICs were determined using broth microdilution in conventional cation-adjusted Mueller Hinton and EDTAsupplemented (zinc-limited) broth. In vivo efficacy of a cefepime human-simulated regimen (2 g g8h as 2 h infusion) was determined in the neutropenic murine thigh infection model against the test strains. Efficacy was measured as the change in log10cfu/thigh at 24 h
- compared with 0 h controls. Results: Metallo-β-lactamase-producing Enterobacterales strains were found to be cefepime, piperacillintazobactam and meropenem non-susceptible in conventional broth. Supplementation with EDTA at a concentration of 300 mg/L resulted in multi-fold reduction in the MICs and restoration of susceptibility. In accordance with the MICs generated in zinc-limited broth, administration of cefepime human-simulated regimen was associated with substantial bacterial reductions among mice infected with metallo-Blactamase-producing Enterobacterales. Absence of MIC reduction in zinc-limited broth and lack of efficacy among mice infected with KPC-producing isolates were observed.
- Conclusions: For metallo-β-lactamase-producing Enterobacterales, susceptibility testing with Mueller-Hinton Broth, a zinc-rich testing medium is flawed since it does not recapitulate the host environment in which zinc concentrations are low.

INTRODUCTION

- A series of assessments of outcomes of β-lactam agents against metallo-β-lactamase-producing Enterobacterales infections in murine models have provided evidence that in vitro-in vivo discordance exists provided that the agents are dosed to attain clinically-achievable exposures (1-5).
- The results of these investigations revealed a major flaw in the currently utilized in vitro susceptibility testing methodologies; while the zinc levels in the conventional culture media such as the cation adjusted Mueller Hinton Broth (CAMHB) utilized in broth microdilution varied among different manufacturers, they were generally higher than the physiologic unbound zinc levels particularly at infection sites (1)
- The impact of the discordance in zinc levels is significant for metallo-β-lactamase-producing organisms because zinc is important for protein folding as well as bicyclic β-lactam ring hydrolysis (6)

OBJECTIVES

• To examined the efficacy of a clinically-achievable exposure of cefepime (FEP), a fourth-generation cephalosporin, against a broad variety of metalloβ-lactamase-producing Enterobacterales using a neutropenic murine thigh infection model.

MATERIALS & METHODS

Antimicrobial Test Agents

- Cefepime vials (2 g, Sagent Pharmaceuticals, Inc) used for in vivo testing.
- Cefepime HCI (Sigma-Aldrich, batch LRAB8503), piperacillin (Sigma-Aldrich, batch 098M4886V), tazobactam (Tecoland Corp., batch J1104B) and meropenem (Sigma-Aldrich, batch LRAB7853) analytical grade standards were used for *in vitro* testina.

Neutropenic Murine Thigh Infection Model

- Female ICR mice were rendered neutropenic by cyclophosphamide; uranyl nitrate was given to induce renal impairment.
- Thighs were inoculated with 0.1 mL of 10⁷ CFU/ml bacterial suspensions.

FEP Human-Simulated Regimen (HSR)

- A previously established FEP HSR, providing an exposure comparable to that observed in humans following a dose of 2g q8h as 2h infusion.
- The percentages of dosing interval during which the unbound FEP concentrations remained above a threshold plasma concentration ($\% fT > C_T$) achieved at $C_T s \ge 64$ and $\le 8 \text{ mg/L}$ were $\le 8\%$ and $\ge 83\%$, respectively, in humans and mice receiving the selected HSR (7).

Bacteria and In vitro Susceptibility

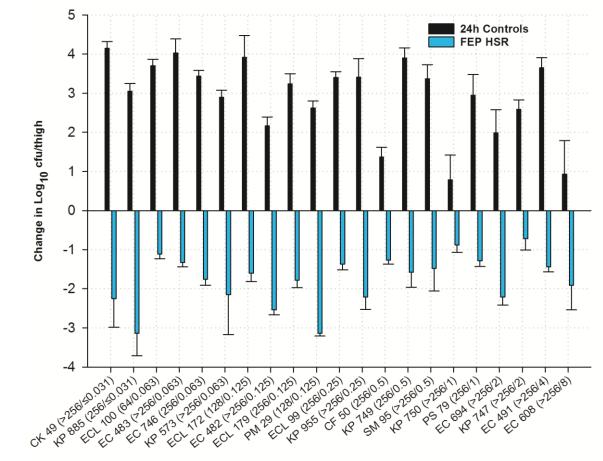
- Clinical Enterobacterales isolates expressing various metallo- β -lactamases (n=21) but not expressing any serine carbapenemases, ESBLs or extended-spectrum cephalosporinases.
- Clinical isolates were acquired from and molecularly characterized by the FDA-CDC Antimicrobial Resistance Isolate Bank (Atlanta, GA, USA), selected from Hartford Hospital CAIRD isolates repository or IHMA, Inc. (Schaumburg, IL)
- Clinical Enterobacterales expressing serine carbapenemases (n=3, KPC-2, KPC-3) were utilized as positive controls.
- A reference strain *Klebsiella pneumoniae* ATCC® 10031[™] to which *bla*_{NDM-1}, *bla*_{NDM-4}, *bla*_{VIM-1}, *bla*_{IMP-1} or $bla_{\text{KPC-2}}$ genes were introduced as well as the parental strain were also examined.
- FEP, piperacilin/tazobactam (TZP), and meropenem (MEM) MICs were determined in triplicate using broth microdilution in CAMHB as outlined by the CLSI and in CAMHB supplemented with EDTA (300 mg/L) as previously shown to provide a zinc-limited environment (1).

In Vivo Efficacy of Human-Simulated Exposures

- Efficacy of FEP HSR R was assessed against the aforementioned Enterobacterales strains.
- Efficacy was measured as the change in log₁₀CFU/thigh at 24h compared with 0h controls.

RESULTS

Table 1. β-lactamase gene content of the isolates and modal MICs determined in CAMHB and CAMHB+EDTA 300 mg/L. Isolates appear in an ascending order of the FEP MICs in CAMHB+EDTA 300 mg/L.


Isolate ID	Organism	Known β-lactamases	MIC (mg/L) in CAMHB			MIC (mg/L) in CAMHB+EDTA 300 mg/L		
			FEP	TZP	MEM	FEP	TZP	MEM
	amase-producing isolate	5						
CK 49	Citrobacter koseri	NDM-5	>256	>256	>64	≤0.031	0.5	≤0.063
KP 885	Klebsiella pneumoniae	NDM-7	256	>256	>64	≤0.031	1	≤0.063
ECL 100	Enterobacter cloacae	NDM-1	64	>256	64	0.063	16	0.25
EC 483	Escherichia coli	VIM-1	>256	>256	32	0.063	1	≤0.063
EC 746	Escherichia coli	TEM-OSBL(b); NDM-5	256	>256	64	0.063	1	≤0.063
KP 573	Klebsiella pneumoniae	VIM-1	>256	>256	64	0.063	2	≤0.063
ECL 172	Enterobacter cloacae	NDM-7	128	>256	>64	0.125	4	0.125
EC 482	Escherichia coli	VIM-1	>256	>256	16	0.125	2	≤0.063
ECL 179	Enterobacter cloacae	TEM-OSBL(b); NDM-5	256	>256	>64	0.125	2	≤0.063
PM 29	Proteus mirabilis	NDM-1	128	>256	64	0.125	≤0.25	0.125
ECL 99	Enterobacter cloacae	VIM-1	256	>256	32	0.25	2	≤0.063
KP 955	Klebsiella pneumoniae SH	V-OSBL(b); TEM-OSBL(b); NDM-19	>256	>256	>64	0.25	2	0.125
CF 50	Citrobacter freundii	NDM-7	256	>256	>64	0.5	4	≤0.063
KP 749	Klebsiella pneumoniae	IMP-26	256	64	64	0.5	16	0.125
SM 95	Serratia marcescens	IMP-1	>256	>256	64	0.5	0.5	≤0.063
KP 750	Klebsiella pneumoniae	VIM-1	>256	>256	>64	1	64	1
PS 79	Providencia stuartii	NDM-5	256	>256	>64	1	4	0.5
EC 694	Escherichia coli	NDM-5	>256	>256	>64	2	32	≤0.063
KP 747	Klebsiella pneumoniae	VIM-26	>256	>256	>64	2	1	0.125
EC 491	Escherichia coli	NDM	>256	>256	64	4	64	≤0.063
EC 608	Escherichia coli	NDM-1	>256	>256	>64	8	64	≤0.063
Clinical KPC-producir	ng isolates							
KP 651	Klebsiella pneumoniae	KPC-2; TEM-1D	>256	>256	64	>32	>256	64
KP 652	Klebsiella pneumoniae	KPC-3; OXA-9; TEM-1B	>256	>256	64	>32	>256	64
KP 752	Klebsiella pneumoniae	KPC-2, VIM-1	>256	>256	>64	>32	>256	>64
sogenic strains								
ATCC 10031	Klebsiella pneumoniae	Parent Strain	≤0.25	≤0.25	≤0.063	≤0.031	≤0.25	≤0.063
	Klebsiella pneumoniae	KPC-2	64	>256	16	32	>256	16
ATCC 10031+ NDM-1	Klebsiella pneumoniae	NDM-1	64	>256	>64	≤0.031	≤0.25	≤0.063
	Klebsiella pneumoniae	NDM-4	128	>256	>64	≤0.031	≤0.25	≤0.063
ATCC 10031+ IMP-1	· ·	IMP-1	64	>256	16	≤0.031	≤0.25	≤0.063
	Klebsiella pneumoniae	VIM-1	>256	>256	64	≤0.031		≤0.063

CONCLUSIONS

- Despite the β-lactam hydrolytic capability observed in CAMHB, when broth was treated with EDTA for cation sequestration, all metallo-βlactamase-producing Enterobacterales strains showed reduction in the MICs of FEP, MEM and, to varying degrees, TZP, while lack of MIC reduction was observed among KPC-producers.
- The MIC reduction among metallo-β-lactamase-producing Enterobacterales strains was attributed to zinc-sequestration and the impairment of metallo-β-lactamase hydrolytic activity under low zinc conditions.
- The marked in vivo activity of FEP against the metallo-β-lactamase-producers did not correspond with the elevated MICs generated in CAMHB as the FEP plasma levels achieved were substantially lower than the observed MICs.
- MICs determined in zinc-limited media appear to provide more accurate prediction of the susceptibility of the metallo-β-lactamaseproducing Enterobacterales to β -lactams. These results have the potential to refine our current susceptibility testing for these strains.

David P. Nicolau, PharmD, FCCP, FIDSA Center for Anti-Infective Research and Development Hartford Hospital 80 Seymour Street Hartford, CT 06102, USA Telephone: +1 (860) 972-3941 E-mail: david.nicolau@hhchealth.org

Figure 1. Comparative efficacy of FEP HSR vs. 21 clinical metallo-β-lactamase-producing Enterobacterales isolates. Isolates appear in an ascending order of the FEP MICs in CAMHB+EDTA 300 mg/L. Data are means ± standard deviations.

Isolate ID (FEP MIC in CAMHB/FEP MIC in CAMHB+EDTA; mg/L)

Figure 2. Comparative efficacy of FEP HSR vs. 3 clinical KPCproducing Enterobacterales isolates. Data are means ± standard deviations

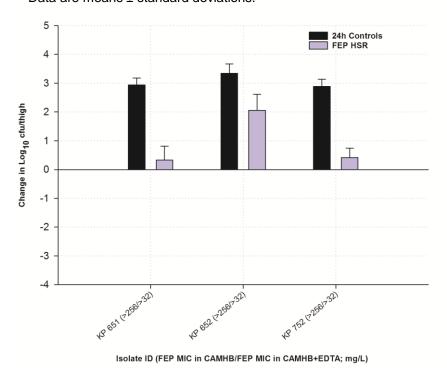
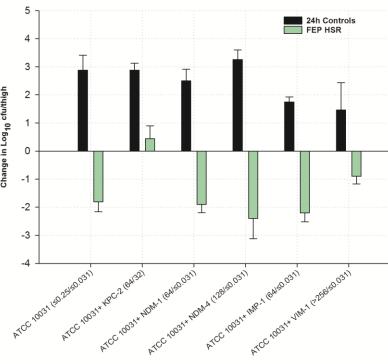



Figure 3. Comparative efficacy of FEP HSR vs. carbapenemase-producing Enterobacterales transformants with isogenic background and the parental strain. Data are means ± standard deviations.

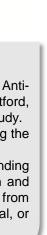
Isolate ID (FEP MIC in CAMHB/FEP MIC in CAMHB+EDTA; mg/L)

REFERENCES

1. Asempa TE, Abdelraouf K, Nicolau DP. Metallo-beta-lactamase resistance in Enterobacteriaceae is an artefact of currently utilized antimicrobial susceptibility testing methods. JAC 2020: 75: 997-1005.

2. MacVane SH, Crandon JL, Nichols WW et al. Unexpected in vivo activity of ceftazidime alone and in combination with avibactam against New Delhi metallo-betalactamase-producing Enterobacteriaceae in a murine thigh infection model. AAC 2014; 58: 7007-9.

3. Wiskirchen DE, Nordmann P, Crandon JL et al. Efficacy of humanized carbapenem exposures against New Delhi metallo-beta-lactamase (NDM-1)-producing Enterobacteriaceae in a murine infection model, AAC 2013; 57: 3936-40.


4. Wiskirchen DE, Nordmann P, Crandon JL et al. In vivo efficacy of human simulated regimens of carbapenems and comparator agents against NDM-1-producing Enterobacteriaceae, AAC 2014: 58: 1671-7.

5. Roujansky A, de Lastours V, Guérin F et al. Analysis of Paradoxical Efficacy of Carbapenems against carbapenemase-producing Escherichia coli in a Murine Model of Lethal Peritonitis. AAC 2020: AAC.00853-20.

6. González LJ, Bahr G, Nakashige TG et al. Membrane anchoring stabilizes and favors secretion of New Delhi metallo-β-lactamase. Nat Chem Biol 2016; 12: 516-22 7. Abdelraouf K. Almarzoky Abuhussain S. Nicolau DP. In vivo pharmacodynamics of new-generation β-lactamase inhibitor taniborbactam (formerly VNRX-5133) in combination with cefepime against serine-β-lactamase-producing Gram-negative bacteria, JAC dkaa373

ACKNOWLEDGEMENTS

- We thank our colleagues at the Center for Anti-Infective Research and Development, Hartford, CT, for assistance with the conduct of the study.
- We thank Dr. Patrice Nordmann for providing the isogenic bacterial strains.
- This research was supported by internal funding from the Center for Anti-Infective Research and Development and received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

