

IV-to-PO Antibiotic Step-down Therapy for Treatment of Uncomplicated Streptococcal Bloodstream Infections

Background

- Bacterial bloodstream infections (BSIs) are one of the leading causes of death among infections in the United States^{1, 2}
- Gram-positive bacteria are predominant pathogens in BSIs^{1, 2} Highly bioavailable oral antibiotics have similar clinical outcomes when compared to standard IV therapy for gram-negative BSIs^{3, 4}
- A recent study showed significantly shorter length of hospital stay and lower mortality associated with step-down oral antibiotics against IV only antibiotic therapy for the treatment of *Streptococcus* spp. BSIs⁵
- Evidence supporting the management of Streptococcus spp. BSIs with oral antibiotics is scarce

Objective

To compare efficacy and safety of step-down IV-to-PO antibiotic therapy to IV-only treatment of uncomplicated Streptococcal BSIs

Methods

Study Design: Single-center, retrospective observational cohort of adult patients with Streptococcal spp. BSI who were treated at the University of New Mexico Hospital, a tertiary care academic medical hospital with 565 beds, from January 1, 2017 to December 31, 2019.

Inclusion Criteria: (1) Age \geq 18 years, (2) Streptococcus spp. identified from one or more blood specimens obtained by culture, and (3) Active IV antibiotic therapy initiated within 48 hours of blood culture collection **Exclusion Criteria:** (1) Positive blood culture treated as contaminant by provider, (2) Polymicrobial BSI, (3) Subjects with cystic fibrosis, (4) Active diagnosis of endocarditis, osteomyelitis, or septic arthritis, (5) Total duration of treatment greater than 14 days from last negative blood culture, (6) Death within 48 hours of presentation or a life expectancy of less than three months **Primary Outcome:** Clinical failure, defined as having one or more of the

following criteria:

- Persistent bacteremia
- 30-day reinfection at any site or new onset sepsis
- 30-day BSI recurrence
- 30-day all-cause mortality

Secondary Outcomes:

- 30-day all-cause readmission
- 30-day antibiotic-related side effects
- 30-day Clostridium difficile infection
- Hospital length of stay

Definitions:

- Active antibiotic: IV or oral antibiotic with confirmed in-vitro activity
- Immunodeficiency: HIV stage 3, asplenia, solid organ or bone marrow transplant on immunosuppressive therapy, chemotherapy within 90 days, ≥ 10 mg of prednisone 2 weeks prior to onset of infection, absolute neutrophil count <1500cells/µL
- Microbiological cure: negative blood culture at the end of therapy or on active IV or oral antibiotic therapy
- Persistent bacteremia: positive blood culture at day 3 or after despite active antibiotic therapy

Gerardo P. Ramos Otero, PharmD; Meghan Brett, MD; Keenan L. Ryan, PharmD, PhC; Preeyaporn Sarangarm, PharmD, BCPS, BCCCP; Carla Walraven, PharmD, BCPS-AQ ID University of New Mexico Hospitals, Albuquerque, NM

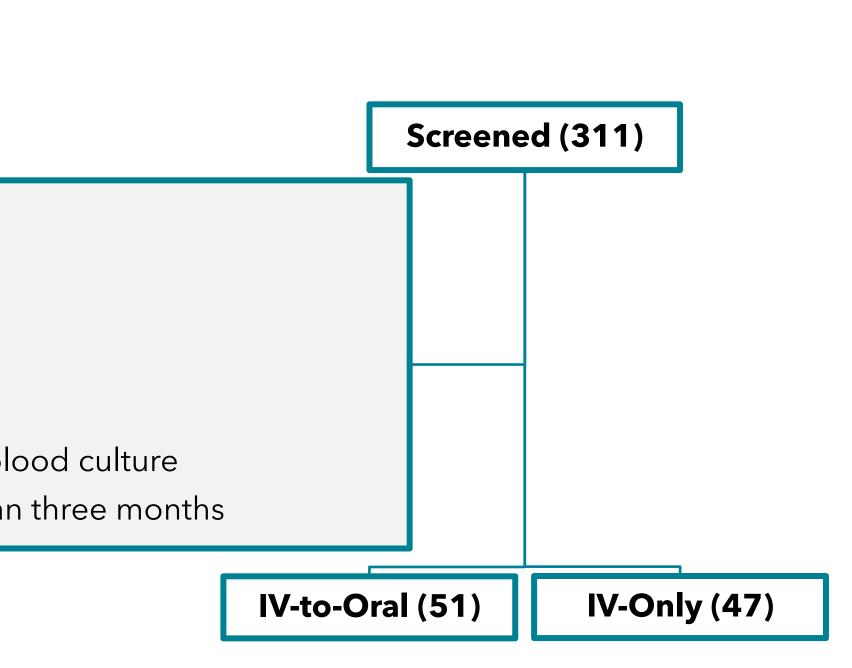
Results

Figure 1. Study Participants

Excluded (213)

29 Positive blood culture treated as contaminant by provider **45** Polymicrobial BSI

1 Subject with cystic fibrosis


37 Active diagnosis of endocarditis, osteomyelitis, or septic arthritis

43 Total duration of treatment greater than 14 days from last negative blood culture **58** Death within 48 hours of presentation or a life expectancy of less than three months

• _•

Table 1. Baseline Characteristics			
Variable	IV-to-PO (n=51)	IV-Only (n=47)	p-value
Age (years) [mean (SD)]	56.6 (17.3)	59.0 (18.5)	0.455
Male [no. (%)]	32 (62.7)	32 (68.1)	0.579
Co-morbid conditions [no. (%)]			
Diabetes	15 (29.4)	15 (31.9)	0.788
Malignancy	6 (11.8)	12 (25.5)	0.079
Immunodeficiency	2 (3.9)	5 (10.6)	0.255
COPD	4 (7.8)	5 (10.6)	0.734
CKD on dialysis	2 (3.9)	3 (6.4)	0.598
Cirrhosis	6 (11.8)	9 (19.1)	0.310
IV drug use	8 (15.7)	5 (10.6)	0.462
Source of infection [no. (%)]			0.279
Respiratory System	17 (33.3)	7 (14.9)	
Skin/soft Tissue	8 (15.7)	11 (23.4)	
Intra-abdominal	6 (11.8)	4 (8.5)	
Unknown	16 (31.4)	20 (42.6)	
Pitt bacteremia score [median (IQR)]	2 (0-3)	2 (1-4)	0.056
Total antibiotic duration (days) [median (IQR)]	13 (9-14)	15 (13-16)	0.001
Total IV-antibiotic duration (days) [median (IQR)]	4 (3-6)	15 (13-16)	<0.001
Microbiological cure [no. (%)]	42 (82.4)	45 (95.7)	0.036
ICU admission [no. (%)]	10 (19.6)	20 (42.6)	0.014
Streptococcal organism from blood culture [no. (%)]			
Group A Streptococcus	13 (25.5)	7 (14.9)	0.193
Group B Streptococcus	7 (13.7)	9 (19.1)	0.468
Group C and Group G Streptococcus	3 (5.9)	7 (14.9)	0.188
S. anginosus Group	3 (5.9)	1 (2.1)	0.545
S. mitis Group	2 (3.9)	10 (21.3)	0.012
S. pneumoniae	19 (37.3)	10 (21.3)	0.083
S. salivarus	5 (9.8)	1 (2.1)	0.207
S. viridans	3 (5.9)	3 (6.4)	1.00

<u>S. anginosus Group</u>: S. anginosus, S. constellatus, S. intermedius; <u>S. mitis Group</u>: S. mitis, S. gordonii, S. oralis, S. parasanguinis

Results (continued)

Table 2. Primary Outc

Clinical Failure [no. (% Persistent Bacteremia 30-day reinfection at 30-day BSI recurrence 30-day all-cause mor

Table 3. Secondary Outcomes

30-day all-cause read 30-day antibiotic-rela 30-day Clostridium d Hospital length of sta

Discussion/Conclusions

- clinically stable
- admission or pathogen
- Streptococcal BSIs

References

- 19(6):501-509
- Minino AM, Murphy SL, Xu J, Kochanek KD. Deaths: final data for 2008. Natl Vital Stat Rep. 2011; 59: 1-126
- 2019;380:425-36.
- fluoroquinolones versus β -lactams. Int J Antimicrob Agents 2018;51:687-92. infections. Open Forum Infect Dis 2018;5:S297-8.

Disclosure: Authors of this presentation have nothing to disclose concerning possible financial or personal relationships with commercial entities that may have a direct or indirect interest in the subject matter of this presentation.

come			
Variable	IV-to-PO (n=51)	IV-Only (n=47)	p-value
%)]	0(0)	9 (19.1)	0.001
a	0(0)	0(0)	-
t any site or new-onset sepsis	0(0)	8 (17.0)	0.002
ce	0(0)	1 (2.1)	0.480
rtality	0(0)	1 (2.1)	0.474

Variable	IV-to-PO (n=51)	IV-Only (n=47)	p-value
dmission [no. (%)]	6 (11.8)	8 (17.0)	0.458
lated side effects [no. (%)]	3 (5.9)	1 (2.1)	0.348
difficile infection [no. (%)]	0(0)	1 (2.1)	0.295
tay (days) [median (IQR)]	5 (4-7)	12 (7-16)	< 0.001

IV-to-oral step-down therapy appears to be safe and effective alternative for treating uncomplicated Streptococcal BSIs in patients who are otherwise

Patients in the IV-to-oral step-down group had shorter duration of therapy and decreased hospital length of stay

Clinical failure was not statistically different when assessed for co-morbidities, source of infection, Pitt bacteremia score, documented BSI clearance, ICU

Beta-lactam antibiotics were used in the majority (94%) of the IV-to-oral group This was a single-center, observational cohort study; larger randomized controlled trials are needed to better determine the efficacy and safety of stepdown IV-to-PO antibiotic therapy to IV-only for the treatment of uncomplicated

Goto M, Al-Hasan MN. Overall burden of bloodstream infection and nosocomial bloodstream infection in North America and Europe. Clin Microbiol Infect. 2013;

Li HK, Rombach I, Zambellas R, Walker AS, McNally MA, Atkins BL, et al. Oral versus intravenous antibiotics for bone and joint infection. N Engl J Med

Mercuro NJ, Stogsdill P, Wungwattana M. Retrospective analysis comparing oral stepdown therapy for Enterobacteriaceae bloodstream infections:

Kang A, Bor C, Chen J, Gandawidjaja M, Minejima E. Evaluation of the clinical efficacy and safety of oral antibiotic therapy for Streptococcus spp. bloodstream

