IDWEEK 2020 Poster Number: 1278

Plazomicin Activity against Enterobacterales Isolates Producing Extended-Spectrum β -Lactamases (ESBLs), **Carbapenemases, and Aminoglycoside-Modifying Enzymes (AMEs) from United States (US) Hospitals**

Mariana Castanheira, Rodrigo E. Mendes, Tim B. Doyle, Valerie Kantro, Helio S. Sader, Jaideep Gogtay, Sandhya Das

JMI Laboratories, North Liberty, IA, USA; Cipla Ltd, Mumbai, India

Introduction

- · Plazomicin is a next-generation aminoglycoside synthetically derived from sisomicin
- · Unlike other aminoglycoside molecules, plazomicin is stable against most aminoglycoside modifying enzymes commonly found in Gram-negative and Gram-positive organisms.
- Plazomicin was approved by the US FDA to treat complicated urinary tract infections, including acute pyelonephritis.
- Recent studies demonstrate that plazomicin is active against Enterobacterales isolates producing extended-spectrum β-lactamases (ESBLs) and carbapenem-resistant isolates (CRE) which often harbor multiple resistance mechanisms and display a multidrug-resistant (MDR) phenotype In this study, we evaluated the activity of plazomicin and comparators against
- Enterobacterales isolates collected in US hospitals during 2018 and 2019. - Isolates tested carried genes encoding ESBLs, carbapenemases, and
- aminoglycoside modifying enzymes (AMEs).

Materials and Methods

- A total of 3 899 Enterobacterales clinical isolates were collected during 2018 and 2019 from 33 US hospitals participating in the ALERT (Antimicrobial Longitudinal Evaluation and Resistance Trends) Program.
- Isolates identified as the cause of infection were included in the study.
- Isolates were limited to 1 per patient.
- · Isolates were susceptibility tested using the reference broth microdilution method described by the Clinical and Laboratory Standards Institute (CLSI).
- Categorical interpretations for plazomicin and comparator agents followed the CLSI and US FDA breakpoints
- Ouality control (OC) was performed according to CLSI guidelines (M07. 2018), and all QC minimal inhibitory concentration (MIC) results were within the acceptable ranges
- CRE was defined as any isolate exhibiting imipenem and/or meropenem MIC values at $\geq 2 \, \mu g/mL$
- Proteus mirabilis and indole-positive Proteeae were categorized as CRE if meropenem MIC values were at $\ge 2 \ \mu g/mL$ due to intrinsically elevated imipenem MIC values.
- Whole genome sequencing on a MiSeq (Illumina, San Diego, California, USA) instrument targeting a 30X coverage was performed on 619 isolates selected as follows
- Escherichia coli Klebsiella spp. Proteus spp. and Enterobacter spp. isolates displaying nonsusceptible MIC values for gentamicin, amikacin, and/or tobramvcin according to CLSI criteria were screened for the presence of AMEs.
- Any Enterobacterales isolate with plazomicin MIC values of ≥128 mg/L was screened for AMEs and 16S rRNA methyltransferase-encoding genes
- CRE and isolates displaying MIC >2 mg/L for at least 2 of the following agents: cefepime, ceftazidime, ceftriaxone, and aztreonam were screened for the presence of B-lactamases.
- Sequences were de novo assembled and genes encoding resistance were searched using a curated library that applied the criteria of >94% sequencing identity and 40% minimum length coverage.

Results

Among 395 isolates producing ESBLs, 217 E. coli, 169 K. pneumoniae, and 9 K, oxytoca were resistant to extended spectrum cephalosporins (ceftazidime, ceftriaxone or cefepime) and/or aztreonam as well as susceptible to carbapenems

- The most common gene detected among these isolates was $bla_{\rm CTXM-15}$ which was observed among 273 isolates, including 93 isolates that carried this gene by itself and 174 isolates that harbored blaction plus bla_{oxa-1} (Figure 1A).
- Other prevalent genes were bla_{CTX-M-27} and bla_{CTX-M-14}, which were noted in 62 and 16 isolates, respectively
- Genes encoding SHV enzymes with extended spectrum were observed among 19 isolates alone and in 9 isolates in combination with another ESBL (blactxm15).
- Plazomicin inhibited 99.5% of the 395 isolates carrying ESBL-encoding genes at the US FDA breakpoint and was the most active aminoglycoside against these isolates (Figure 2).
- Amikacin, gentamicin, and tobramycin inhibited 97.7%, 59.2%, and 45.8% of these isolates when CLSI breakpoints were applied.
- The carbanenems meronenem and iminenem were the most active comparators. Susceptibility rates against these agents were 99.5% and 99.7%, respectively.
- Among 44 CRE isolates, 32 harbored carbapenemase genes that included 18 bla_{KPC2} , 10 bla_{KPC2} , 1 bla_{NDM5} , 1 bla_{VIM1} , 1 $bla_{\text{KPC2-like}}$, and 1 isolate carrying bla_{NDM1} plus bla_{OXA232} (Figure 1B).
- Carbapenemase-producing isolates were 28 K. pneumoniae, 2 K. oxytoca, and 1 each of Serratia marcescens and Citrobacter freundii species complex.
- Plazomicin and tigecycline were the only agents that displayed activity against >70% of the carbapenemase-producing Enterobacterales. A total of 90.3% of the isolates had intermediate results for colistin.
- Amikacin and gentamicin inhibited only 65.6% and 53.1% of these isolates, respectively
- The activity of tobramycin was limited against these isolates.
- A total of 306 isolates carried AME encoding genes, including 91 E. coli and 117 K. pneumoniae.
- The most common genes modifying amikacin, gentamicin, and tobramycin were aac(6')-lb-cr and aac(3)-lla that were detected alone and in combination in 177 and 159 isolates, respectively (Figure 1C).
- Plazomicin was active against 97.7% of isolates carrying AME genes (Figure 2).
- Only 14.1% and 10.8% of the AME-producing isolates were susceptible to gentamicin and tobramycin, respectively, but amikacin was active against 92.8% of these isolates
- The carbapenems and tigecycline were the only other agents to inhibit >90% of these isolates
- Three K. pneumoniae isolates carried 16S rRNA methyltransferases, 1 armA (which also harbored genes encoding NDM-1 and OXA-232), and 2 rmtR1
- These isolates were resistant to all aminoglycosides, including plazomicin

Conclusions

- Plazomicin displayed activity against Enterobacterales isolates from US hospitals carrying ESBLs, carbapenemases, and AMEs.
- This aminoglycoside exhibited greater activity than other agents from the same class against these challenging isolates.
- Continuous surveillance in US hospitals demonstrates a low occurrence (<0.1%) of isolates that carry genes encoding 16S rRNA methyltransferase that confer resistance to all aminoglycosides.
- Plazomicin seems to be a valuable alternative for the treatment isolates carrying genes encoding ESBLs, AMEs, and carbapenemases, the genes that usually are multidrug resistant and have limited therapeutic options.

Figure 2 Activity of plazomicin and comparator agents against Enterobacterales producing ESBLs, carbapenemases and AMEs

Acknowledgements

The abstract for this study has been amended

This study was performed by JMI Laboratories and supported by Cipla Ltd (Mumbai, India), which included funding for preparing this poster.

References

Clinical and Laboratory Standards Institute (2019). M100Ed29E. Performance standards for antimicrobial susceptibility testing: 29th informational supplement, Wayne, PA: CLSI.

Clinical and Laboratory Standards Institute (2018). M07Ed11E. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard: eleventh edition. Wayne, PA:

Eljaaly K, Alharbi A, Alshehri S, et al. (2019). Plazomicin: A novel aminoglycoside for the treatment of resistant Gram-negative bacterial infections. Drugs 79:243-269.

EUCAST (2019). Breakpoint tables for interpretation of MIC's and zone diameters. Version 9.0. January 2019. Available at http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files /Breakpoint tables/v 8.0 Breakpoint Tables.pdf.

Castanheira M, Davis AP, Mendes RE, et al. (2018). In vitro activity of plazomicin against Gramnegative and Gram-positive isolates collected from U.S. hospitals and comparative activity of aminoglycosides against carbapenem-resistant Enterobacteriaceae and isolates carrying carbapenemase genes. Antimicrob Agents Chemother 62: e00313.

Castanheira M, Davis AP, Serio AW, et al. (2019). In vitro activity of plazomicin against Enterobacteriaceae isolates carrying genes encoding aminoglycoside-modifying enzymes most common in US Census divisions. Diagn Microbiol Infect Dis 94: 73-77.

Zhanel GG, Lawson CD, Zelenitsky S, et al. (2012). Comparison of the next-generation aminoglycoside plazomicin to gentamicin, tobramycin and amikacin, Expert Rev Anti Infect Ther 10: 459–473.

Contact

Mariana Castanheira, PhD 345 Beaver Kreek Centre, Suite A North Liberty, Iowa 52317 Phone: (319) 665-3370 Email: mariana-castanheira@imilabs.com