In Vitro Activity of Ceftolozane/Tazobactam against Pseudomonas aeruginosa from ICU and Non-ICU Patients with Respiratory Tract Infections in the Asia/Pacific region – SMART 2016-2018

Introduction

Ceftolozane/tazobactam (C/T) antipseudomonal an cephalosporin combined with a β-lactamase inhibitor approved by FDA and EMA for hospitaland ventilatoracquired associated bacterial pneumoantimicrobial Elevated resistance rates have been among pathogens reported from patients in ICUs. Using collected in Asia/ isolates Pacific as part of the Study for Monitoring Antimicrobial Trends (SMART) Resistance surveillance program, global we evaluated the activity of C/T comparators against and P. aeruginosa from patients with lower respiratory tract infections (RTI) in ICU and non-ICU wards.

Methods

In 2016-2018, 56 clinical laboratories in 11 Asia/Pacific 2,605 countries collected P. aeruginosa isolates from patients with RTI in ICU and non-ICU wards. MICs were determined using CLSI broth microdilution and interpreted with CLSI breakpoints [1, 2]. C/T-nonsusceptible isolates were screened by PCR and sequenced for genes encoding β -lactamases [3], except isolates collected from India (2016-2018), Vietnam (2017), one Vietnam site in 2018, and small other number isolates which were not available molecular characterization and were not included in the denominators carbapenemase for rate calculations.

Figure 1. Antimicrobial susceptibility of all *P. aeruginosa* isolates collected In Asia/Pacific, by ward type^a

^aResults for colistin are not shown because *P. aeruginosa* are no longer considered susceptible to colistin per 2020 CLSI guidelines. C/T, ceftolozane/tazobactam; P/T, piperacillin/tazobactam; IMI, imipenem; MEM, meropenem; FEP, cefepime; CAZ, ceftazidime; LVX, levofloxacin; AMK, amikacin

Figure 2. Antimicrobial susceptibility of meropenemnonsusceptible *P. aeruginosa* isolates, by ward type^a

^aResults for colistin are not shown because *P. aeruginosa* are no longer considered susceptible to colistin per 2020 CLSI guidelines. C/T, ceftolozane/tazobactam; P/T, piperacillin/tazobactam; IMI, imipenem; MEM, meropenem; FEP,

cefepime; CAZ, ceftazidime; LVX, levofloxacin; AMK, amikacin.

Figure 3.

Results

^aShowing individually only countries with n>20 in both ICU and non-ICU subsets; not shown are Hong Kong and Singapore. AUS, Australia; IND, India; KOR, South Korea; MYS, Malaysia; NZL, New Zealand; PHL, Philippines; TWN, Taiwan; THA, Thailand; VIE, Vietnam.

carbapenemase-positive Figure Proportion of **P.** aeruginosa isolates, by country and ward type^a

^aShowing individually only countries with n>20 in both ICU and non-ICU subsets; not shown are Hong Kong and Singapore. N/A, not available; AUS, Australia; IND, India; KOR, South Korea; MYS, Malaysia; NZL, New

Zealand; PHL, Philippines; TWN, Taiwan; THA, Thailand; VIE, Vietnam.

K. Young⁵, M. Motyl⁵, D. Sahm¹

¹IHMA, Schaumburg, IL, USA ²MSD, Taipei, Taiwan ³MSD, Petaling Jaya, Malaysia ⁴MSD, Singapore ⁵Merck & Co., Inc., Kenilworth, NJ, USA

^aIntrinsic AmpC are not shown. ^cIncludes 5 VEB-positive, 2 GES-positive, and 1 SHV-positive isolate detected in ICUs and 7 VEBpositive isolates in non-ICU wards. ESBL, extended-spectrum β -lactamase.

Figure 6. Acquired β-lactamases detected in molecularly characterized C/T-nonsusceptible *P. aeruginosa* isolates (ICU and non-ICU isolates combined), by country^{a, b}

^aIntrinsic AmpC are not shown.

^bShowing individually only countries with >10 C/T-nonsusceptible isolates. A/P, Asia/Pacific; AUS, Australia; KOR, South Korea; TWN, Taiwan; THA, Thailand; VIE, Vietnam; ESBL, extended-spectrum β -lactamase.

```
S. Lob<sup>1</sup>, K. Kazmierczak<sup>1</sup>, W. Chen<sup>2</sup>, Y. Khoo<sup>3</sup>, K. Balwani<sup>4</sup>,
```


IHMA **2122 Palmer Drive** Schaumburg, IL 60173 USA www.ihma.com

ularly from	1
	•
	•

Results Summary

- Antimicrobial susceptibility was lower in ICUs than in non-ICU wards. Susceptibility to C/T was 84.2% in ICUs and 91.7% in non-ICU wards, 15-22 and 12-19 percentage points, respectively, higher than the tested comparator β -lactams (Figure 1).
 - C/T maintained activity against 56.8% and 67.2% of meropenemnonsusceptible isolates from ICU and non-ICU patients, respectively (Figure 2).
 - At the country level, C/T susceptibility was not consistently lower among ICU than non-ICU isolates (Figure 3). Susceptibility to C/T was lowest for isolates collected in India, Vietnam, and Thailand, and >91% for the other countries.
 - The high rates of carbapenemase-positive isolates observed for Thailand and Vietnam correlated inversely with C/T susceptibility (Figures 3 and 4).
 - For Asia/Pacific overall, the proportion of carbapenemasepositive isolates was higher among C/T-nonsusceptible isolates from ICU than non-ICU wards (Figure 5). In both ward types, the majority of detected carbapenemases were metallo-βlactamases (MBLs), with a substantially larger proportion of IMPtype MBLs among isolates collected from patients in ICU than non-ICU wards.
- The proportion of MBL-positive isolates was greatest among isolates collected in Vietnam (predominantly IMP-type) and Thailand (both IMP- and VIM-type). Additionally, 5 of 6 GES carbapenemases were found in isolates from Thailand (1 isolate was detected in New Zealand, not shown) (Figure 6).

Conclusions

In the Asia/Pacific region, C/T could provide an important treatment option for patients in both ICU and non-ICU wards with RTI caused by *P. aeruginosa*, especially in countries with low rates of carbapenemase-positive isolates.

References:

- 1. Clinical and Laboratory Standards Institute. *Methods for Dilution Antimicrobial* Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standards – Eleventh Edition. CLSI document M07-Ed11. 2018. CLSI, Wayne, PA.
- 2. Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing – 30th ed. CLSI Supplement M100. 2020. CLSI, Wayne, PA.
- 3. Lob SH, Biedenbach DJ, Badal RE, Kazmierczak KM, Sahm DF. Antimicrobial resistance and resistance mechanisms of Enterobacteriaceae in ICU and non-ICU wards in Europe and North America: SMART 2011–2013. J Glob Antimicrob Resist 2015; 3: 190-7

Funding for this research was provided by Merck Sharp & Dohme Corp., a subsidiary of Merck & Co., Inc., Kenilworth, NJ USA. The authors thank all the participants in the SMART program for their continuing contributions to its success.

https://bit.ly/3kTALxT