$\operatorname{RTI}(b)(s)$
Heallh Solutions

Current Estimates of the Impact of Routine

 Childhood Immunizations in Reducing Vaccine-Preventable Diseases in the United StatesLa EM, ${ }^{1}$ Carrico J, ${ }^{1}$ Talbird SE, ${ }^{1}$ Chen YT, ${ }^{2}$ Nyaku MK, ${ }^{2}$ Carias C, ${ }^{2}$ Marshall GS, ${ }^{3}$ Roberts CS ${ }^{2}$ ${ }^{1}$ RTI Health Solutions, Research Triangle Park, NC, United States; ${ }^{2}$ Merck \& Co., Inc., Kenilworth, NJ, United States; ${ }^{3}$ Norton Children's and University of Louisville School of Medicine, Louisville, KY, United States

BACKGROUND

Routine immunization recommendations in the United States
US) for children aged 10 years and younger currently target (US) for children ages
14 different diseases.
Previous studies have highlighted the public heath and
economic impact of the childhood vaccination program 23 but updated estimates are needed given changes in disease epidemiology over time, evolving vaccine
dite

OBJECTIVE

To estimate the public health gains associated with the US
childhood vaccination program, focusing on reductions in chindaod vaccination program, focusing on reduction
overall and age-specific cisease incidence and overall and age-specific disease i
coresponding cases of disease.
Table 1. Summary of Pre- and Post-Vaccine Disease Incidence Sources

Disease	Dates of Vaccination Program Initiation ${ }^{\text {a }}$	Pre-Vaccine Source	Post-Vaccine Source
Diphtheria	1928-1943	Calculated based on 1936-1945 cases before widespread vaccination in late $1940 \mathrm{~s}^{3}$	2014-2018 NNDSS ${ }^{4}$
Hepatitis A	1995	1990-1994 NNDSS 4	2014-2018 NNDSS 4
Hepatitis B	1981, 1986	1976-1980 NNDSS 4	2014-2018 NNDSS 4
Hib	1985, 1987, 1990	Zhou et al., ${ }^{5}$ based on data from 1976-1984	2013-2017 ABCs ${ }^{6}$
Influenza	1945	Calculated based on CDC estimated cases and cases averted for seasons 2014-2015 through 2018-20197,8	Calculated based on CDC estimated cases for seasons 2014-2015 through 2018-20197
IPD	2000	1997-1999 ABCs ${ }^{6}$	2013-2017 ABCs ${ }^{6}$
Measles	1963, 1967, 1968	Zhou et al. ${ }^{9}$	$2014-2018$ NNDSS ${ }^{4}$
Mumps	1940s, 1967	Zhou et al. ${ }^{9}$	2014-2018 NNDSS ${ }^{4}$
Pertussis	1914-1941	Calculated based on 1934-1943 cases before routine vaccination in late $1940 \mathrm{~s}^{3}$	2014-2018 NNDSS ${ }^{4}$
Polio	1955, 1961-1963, 1987	Calculated based on 1951-1954 cases 3	2014-2018 NNDSS 4
Rotavirus	1998 (first licensed but withdrawn); 2006	Calculated based on 1993-2002 cumulative risk of event by age 59 months without vaccine ${ }^{10}$	Calculated based on pre-vaccine incidence and \% reduction in events with vaccine ${ }^{10}$
Rubella	1969	Zhou et al. ${ }^{9}$	2014-2018 NNDSS 4
Tetanus	1933-1949	Calculated based on 1947-1949 cases before routine vaccination in late $1940 s^{3}$	2014-2018 NNDSS ${ }^{4}$
Varicella	1995	1990-1994 ${ }^{\text {NNDSS }}{ }^{4}$	2014-2018 NNDSS ${ }^{4}$

RESULTS

Incidence decreased for all diseases evaluated
atter vaccines were introduced (Tobe after vaccines were introduced (Table 2), with
reductions ranging from 17.4\% for influenza to reductions ranging firm 1).

- More than 90% reduction in incidence was achieved for 10 of the 14 diseases evaluated (including reduction in in incidence of rotavirus hospitalizations). Age-specifici incidence estimates also decreased after vaccines were introduced (Estimated annual cases averted by vaccination tetanus to more than 4.2 million for varicella (Table 2).

METHODS

A targeted literature review was conducted to obtain estimates of disease incidence with and without the childhood was dization program, accounting for herd immunity. These estimates were used in a Microsoft Excel-based model that
waled to evaluate reductions in cases of vaccine-preventable diseases associated with immunization in a single calendar year population.
Pre-vaccine disease incidence was estimated before each routine vaccine was recommended, with average values
across multiple years obtained from the literature or calculated based on disease surveillance data or annual case estimates from the literature (Table 1).
Current incidence was generally calculated as average values over the most recent 5 years of available data (Table 1). Because childhood immunizations provide protection against diseases beyond ages 0 to 10 years, overall incidence estimates and estimates by age group were calculated across all ages (or for a s subset of ages to account for disease epidemiology,
available data, and/or to focus on the effects of childhood immnization). available data, and/or to focus on the effects of childhood immunization).
Differences in pre- and post-vaccine age-specific incidence rates were then compared and used to calculate the annual
number of cases averted based on 2019 US population estimates (i.e., the analytic framework estimates the impact of the number of cases averted based on 2019 US population estimates (i.e., the analytic framework estimates the impact of the
mmunization program if there was no vaccination and incidence was at pre-vaccine era rates).

Figure 1. Percentage Reduction in Disease Incidence Post-Vaccine, by Disease

Disease	Pre-Vaccine		Post-Vaccine		Cases Averted
	Disease Incidence per $100,000^{3}$	Annual Cases ${ }^{\text {a }}$	Disease Incidence per 100,000³	Annual Cases ${ }^{\text { }}$	
Age < 5 years ($\mathrm{n}=19,576,683$)					
Hib	92	18,000	<1	< 100	18,000
Rotavirus ${ }^{\text {c }}$					
Hospitalizations	340	67,000	29	6,000	61,000
ED visits	1,072	210,000	420	82,000	128,000
Outpatient visits	2,228	436,000	1,222	239,000	197,000
NMA cases	11,364	2,225,000	6,233	1,220,000	1,004,000
Age ≤ 10 years ($n=43,833,518$)					
Diphtheria	89	39,000	<1	<1	39,000
Influenza	16,232	7,115,000	13,412	5,879,000	1,236,000
Age < 40 years ($n=170,936,198$)					
Measles	2.129	3,639,000	<1	<1,000	3,639,000
Mumps	1,312	2,243,000	2	3,000	2,240,000
Rubella	1,124	1,921,000	<1	<10	1,921,000
All ages ($\mathrm{n}=328,239,523$)					
Hepatitis A	17	56,000	2	7,000	49,000
Hepatitis B	46	150,000	7	22,000	128,000
IPD	24	79,000	10	31,000	48,000
Pertussis	511	1,679,000	22	72,000	1,607,000
Polio	21	70,000	0	0	70,000
Tetanus	<1	1,000	<1	<100	1,000
Varicella	1,328	4,359,000	30	97,000	4,262,000

LIMITATIONS

- Pre- and post-vaccine disease incidence estimates are generally based on multiple years of
data and have been adiusted by underreporting factors as warranted; evolving understanding data and have been adjusted by undereeporting factors as warranted; evolving understanding Additional diseases prevented by pneumococcal vaccination, including pneumonia and acute
otitis media, are not included in these estimates, which could cause an underestimation of the otitis media, aren
averted burden.
This analysis did not estimate separately the proportion of disease incidence reduction
that may be attributed to later childhood, adolescent and adwa that may be attributed to atere chichhood, adolestent, and adult vaccines or to booster
doses. As a result, the analysis may overestimate reductions in burden associated with childhood immunization.

REFERENCES

CONCLUSIONS

- Routine childhood immunization in the US continues to result in incidence reductions across all diseases and for all age groups evaluated, with reductions ranging from $17 \%-100 \%$ and corresponding to estimated reductions in cases ranging from 1,000 to 4.2 million cases of disease.
- The current study focused on the disease burden averted. An economic evaluation is necessary to fully understand the societal impact of vaccination.

DISCLOSURES

CONTACT INFORMATION

RTI Heath Solutions
3040 East Cornwalis Road
3040 East Cornwallis Road
PO Box 2 R194
Research
Ressearch Triangle Park, NC 27709-2194

