Barriers to Hepatitis C Elimination in an Urban Clinic Offering Integrated HIV/HCV Treatment

New Jersey Medical School

Introduction

- Treatment of Hepatitis C virus (HCV) infection for persons with Human Immunodeficiency Virus (HIV) is dependent on consistent outpatient follow-up.
- Rutgers Infectious Diseases Practice (IDP) offers integrated HIV/HCV treatment that works with patients to address social barriers to care.
- We sought to identify factors that are associated with lower HCV treatment rates in HIV/HCV co-infected patients followed at the IDP.

Methods

- Retrospective chart review for 317 HIV/HCV co-infected patients treated at IDP between January 2017 and July 2018
- Data collected: demographics, HIV disease markers, liver function tests, HCV treatment history and response
- Factors that were significant at the p<0.05 level were included in the multivariate analysis

Figure 1: Patient Population Selection

Results

- Table 1 shows our study group demographics
- Table 2 shows logistic regression of significant HCV treatment factors
- Figure 2 shows behavioral risk factors for HIV/HCV infection
- Figure 3 shows HIV control and liver function

Table 1. Demographics of the Study Group						
Variable	Overall (N=317)	Treated (N=206)	Not Treated (N=111)	P-Value		
Age, mean years	57.3	57.7	56.6	0.297		
Sex (%)				<0.001		
Male	184 (58%)	136 (66%)	48 (43%)			
Female	133 (42%)	70 (34%)	63 (57%)			
Race (%)				0.034		
Black	251 (79.2%)	163 (79.1%)	88 (79.3%)			
Hispanic	33 (10.4%)	25 (12.1%)	8 (7.2%)			
White	18 (5.7%)	13 (6.3%)	5 (4.5%)			
Other	15 (4.7%)	5 (2.5%)	10 (9.0%)			
HIV Status						
Years Since HIV Diagnosis, mean	13	13	11.2	0.021		
HIV Viral Load, mean	7211	1428	17945	<0.001		
CD4 Count, mean	567	631	447	<0.001		
Health Status						
Number of Medical Problems, mean	10.2	9.9	10.6	0.384		
Number of Medications, mean	11.3	11.3	11.4	0.897		
Liver Function						
APRI, mean	0.84	0.43	1.6	0.005		

100.00% 90.00% 80.00% 70.00% 60.00% 50.00% 40.00% 30.00% 20.00% 10.00% 0.00%

Lauren Correia, BS¹; Christopher Tseng, BS¹; Mario Portilla, RN¹; Shobha Swaminathan, MD¹

¹Division of Infectious Diseases, Department of Medicine, Rutgers New Jersey Medical School, Newark, NJ 07103

Figure 1. Behavioral Risk Factors for HIV/HCV Infection

CURRENT DRUG USE

PAST DRUG USE

HETEROSEXUAL CONTACT

MSM

P<0.001

Table 2. Logistic Regression of Significant HCV Treatment Factors

Logistic Regression of Significant HCV

Female	
APRI	
Current Drug Use	
HIV Viral Load ≥40 copies	
Years since HIV Diagnosis	
CD4 Count < 200 cells/cm^3	
Past Drug Use	
Racial Distribution	

7.30%

10-20.

- complications from HCV.
- access to care.

antiretroviral therapy. Hepatology, 2007. 46(3): p. 622-630. patients: a cohort study. Ann Intern Med, 2014. 160(6): p. 369-79.

Treated

Not Treated

Contact

Shobha Swaminathan, MD Division of Infectious Diseases Rutgers New Jersey Medical School 973-972-1057 swaminsh@njms.rutgers.edu

Figure 2. HIV Control and Liver Function

P<0.001

Treatment Factors	Odds Ratio	P-Value
	2.93	< 0.001
	2.39	0.001
	2.43	0.004
	2.11	0.021
	0.957	0.021
	1.99	0.097
	1.55	0.298
	1.39	0.355

Conclusions

• Our results show that despite the availability of integrated treatment programs, concerted efforts need to be made for patients at high risk for not receiving HCV treatment, and who therefore remain at high risk for

• Provider perceptions may play a role in withholding treatment for those with high HIV viral load and current drug or alcohol use; whereas the rationale for why women were less likely to be treated is less clear and may be related to trauma and other factors not captured by this project that may negatively impact their

References

Platt, L., et al., Prevalence and burden of HCV co-infection in people living with HIV: a global systematic review and meta-analysis. Lancet Infect Dis, 2016. 16(7): p. 797-808. Pineda, J.A., et al., Clinical progression of hepatitis C virus-related chronic liver disease in human immunodeficiency virus-infected patients undergoing highly active

Lo Re, V., 3rd, et al., Hepatic decompensation in antiretroviral-treated patients co-infected with HIV and hepatitis C virus compared with hepatitis C virus-monoinfected

Liberto, M.C., et al., Virological Mechanisms in the Coinfection between HIV and HCV. Mediators Inflamm, 2015. 2015: p. 320532.

Klein, M., et al., HIV and hepatitis C virus coinfection in Canada: challenges and opportunities for reducing preventable morbidity and mortality. HIV Medicine, 2013. 14(1): p.