# The Impact of COVID-19 Response on Central Line Associated Bloodstream Infections and Blood Culture Contamination Rates at a Tertiary Care Center in Detroit, Michigan



Jennifer LeRose, MPH, MS-II, <sup>1</sup> Avnish Sandhu, DO,<sup>2</sup> Jordan Polistico, MD,<sup>2</sup> Joe Ellsworth, BS,<sup>3</sup> Nancy Baran, MS, MT(ASCP),<sup>3</sup> Mara Cranis, MPH,<sup>3</sup> Lavina Jabbo, MHSA, MT,<sup>3</sup> Lori Cullen RN, BSN,<sup>3</sup> Judy Moshos MT(ASCP),<sup>3</sup> Lobelia Samavati, MD,<sup>3</sup> Teena Chopra, MD, MPH <sup>2</sup>

<sup>1</sup> Michigan State University, School of Osteopathic Medicine, East Lansing, MI, USA

<sup>2</sup> Department of Internal Medicine, Division of Infectious Diseases, Detroit Medical Center, Wayne State University School of Medicine, Detroit, MI, USA

RESULTS

<sup>3</sup> Department of Infection Control, Detroit Medical Center, Detroit, MI, USA

### ABSTRACT

Background: Coronavirus Disease (COVID-19) pandemic has presented challenges to every facet of healthcare system. There is limited research evaluating the consequence of diverting resources from patient safety initiatives to COVID-19 crisis efforts. In an attempt to quantify the impact of COVID-19 on the quality of patient care, we compared rates of blood culture contamination and central line associated bloodstream infections (CLABSIs) during COVID-19 to those before the pandemic.

Methods: A comparative retrospective cohort study was conducted to analyze blood culture contamination and CLABSI rate per 1,000 line days in a tertiary care hospital in Detroit within a "pre COVID-19" timeframe, January - May 2019, and "COVID-19" timeframe, January - May 2020. The CLABSI rate data was obtained by Infection Control. Blood culture contamination report was obtained through microbiology Department. Chi-square and ttest were used for statistical analysis.

**Results**: The blood culture contamination rate increased from 3.2% during pre COVID-19 timeframe to 3.8% during COVID-19 (p <0.01) with the highest rate in March and April 2020, correlating with the peak of COVID-19. The CLABSI rate per 1,000 catheter-days increased from 0.40 pre COVID-19 time period to 1.20 during COVID-19 (p < 0.01). Of the 36 patients that developed a CLABSI, 6 (17%) were in pre-COVID-19 cohort while 30 (83%) were in COVID-19 cohort. Among the 30 patients with CLABSIs identified within COVID-19 cohort, 16 (53.3%) expired compared to 2 of 6 (33.3%) within pre COVID-19 timeframe (p = 0.66) (Table 1).

#### INTRODUCTION

- CLABSIs have  $\uparrow$  length of stay (LOS) by 14 days,  $\uparrow$  morbidity and mortality by 12-25%, and  $\uparrow$  \$46,000 in excess cost per case.<sup>1</sup>
- During the pandemic, hospitals have patient surges, resource shortages and continuously changing recommendations.<sup>2</sup>
- Our study aimed to quantify the impact of COVID-19 on infection control measures, specifically blood culture contamination and CLABSI rates

### METHODS

- Blood culture contamination definition: blood culture that grew only Bacillus (except B. anthracis), Corynebacterium (except C. diphtheria), Cutibacterium acnes, coagulase-negative Staphylococcus, or alpha hemolytic Streptococcus (except S. pneumoniae) without a repeat blood culture positive for the same organism in subsequent 4 days.
- TheraDoc<sup>®</sup> identified + blood cultures and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) test results.
- The National Healthcare Safety Network's (NHSN) criteria was used to identify CLABSIs.3
- Patients were divided into cohorts based on date of infection relative to COVID-19. Fisher's Exact Test and two-tailed Wilcoxon Signed-Rank Test were used for analysis. A p-value < 0.05 was considered statistically significant. SAS Software was used for computations.

|                                                      | Bre COVID- 19 | COVID-19    |          | 6.0%          |                |                   |                   |               |                   |
|------------------------------------------------------|---------------|-------------|----------|---------------|----------------|-------------------|-------------------|---------------|-------------------|
| Channed and string                                   | (N C)         | (N 20)      | a contra | _             |                |                   |                   |               |                   |
| AGE modion (IOB) <sup>1</sup>                        | (N = 6)       | (N = 30)    | p-value  | nation        |                | 2.0%              | 4.0%              | 4.4%          | 4.1%              |
|                                                      | 00.3 (±17.3)  | 02.0 (20.1) | 0.92     | . u 4.0%      | 3.4%           | 3.6%              | 3.0%              |               | 3.2%              |
| RACE, II (%)                                         |               |             |          | re Cor        | 3.4%           | $\sim$            | 3.0%              | 2.7%          |                   |
| Black                                                | 4 (66.7)      | 18 (60.0)   | 1.0      | Cultu         |                | 2.7%              |                   |               |                   |
| White                                                | 1 (16.7)      | 6 (20.0)    |          | pool          |                |                   |                   |               |                   |
| Other/Unknown                                        | 1 (16.7)      | 6 (20.0)    |          | 8             |                |                   |                   |               |                   |
| FEMALES, n (%)                                       | 3 (50.0)      | 17 (56.7)   | 1.0      | 0.0%          |                |                   |                   |               |                   |
| EXPIRED, n (%)                                       | 2 (33.3)      | 16 (53.3)   | 0.66     |               | January        | February          | March<br>Month    | April         | May               |
| SEPSIS AS PRIMARY CAUSE OF DEATH, n (%)              | 2 (100.0)     | 6 (37.5)    | 0.183    |               |                |                   | During            | COVID-19      |                   |
| CHARLSON COMORBIDITY INDEX, n (%)                    |               |             |          | Figure        | 1 Diagod cult  | uro contominatio  |                   |               | hrough Mourin     |
| 0-1                                                  | 1 (16.7)      | 9 (30.0)    | 0.64     | Pre CC        | VID-19 and c   | luring COVID-19   | cohorts.          | en January    | inrougn way in    |
| 2-3                                                  | 3 (50.0)      | 7 (23.3)    |          | 9.00 -        | ſ              |                   |                   |               |                   |
| 4-5                                                  | 1 (16.7)      | 4 (13.3)    |          |               |                |                   |                   | 7.0           |                   |
| >5                                                   | 1 (16.7)      | 10 (33.3)   |          | e days        |                |                   |                   |               |                   |
| TYPE OF CENTRAL VENOUS CATHETER <sup>2</sup> , n (%) |               |             |          | - 00.0 -      | -              |                   |                   |               | $\backslash$      |
| Peripherally Inserted Central Venous Catheter        | 2 (33.3)      | 5 (15.6)    | 0.48     | per 1,0       |                |                   |                   | /             | $\backslash$      |
| Internal Jugular                                     | 4 (66.7)      | 13 (40.6)   |          | - 00.5 Tate   | _              |                   | 23                |               |                   |
| Mediport                                             | 0 (0.0)       | 1 (3.1)     |          | CLABS         | 1.2            | 1.4               | 10                | 0.0           | ¥2.0              |
| Femoral                                              | 0 (0.0)       | 7 (21.9)    |          | Ū.            | 0.0            |                   | 1.0               | 0.5           | 0.3               |
| Subclavian                                           | 0 (0.0)       | 6 (18.8)    |          | 0.00 -        |                | 1.0               | March             | April         | May               |
| CENTRAL VENOUS CATHETER INSERTION LOCATION, n (%)    |               |             |          |               | January        | rebruary          | Month             | Артт          | ividy             |
| Emergency Department                                 | 0 (0.0)       | 4 (13.3)    | 0.87     |               |                | Pre COVID-1       | .9 During         | COVID-19      |                   |
| Floor (Acute Care or Intensive Care Unit)            | 4 (66.7)      | 14 (46.7)   |          | Figure        | 2. Central Lin | ne Associated Blo | odstream Info     | ections per 1 | ,000 central-line |
| Interventional Radiology or Operating Room           | 2 (33.3)      | 11 (36.7)   |          | days b<br>300 | etween Janu    | ary through May   | for two cohor     | ts.           |                   |
| Present on Admission                                 | 0 (0.0)       | 1 (3.3)     |          | sults         |                |                   |                   |               |                   |
| INTENSIVE CARE UNIT, n (%)                           | 3 (50.0)      | 21 (70.0)   | 0.38     | ey 50         |                |                   |                   |               |                   |
| VASOPRESSORS, n (%)                                  | 3 (50.0)      | 22 (73.3)   | 0.34     | GIN 200       |                |                   |                   |               |                   |
| VENTILATOR, n (%)                                    | 2 (33.3)      | 21 (70.0)   | 0.16     | /e CO         |                |                   |                   |               |                   |
| BILEVEL POSITIVE AIRPRESSURE, n (%)                  | 2 (33.3)      | 4 (13.3)    | 0.26     | ositiv<br>150 |                |                   |                   | dt –          |                   |
| LENGTH OF STAY, median (IQR) <sup>1</sup>            | 19.0 (9.0)    | 27.0 (33.0) | 0.12     | anbi 100      |                |                   |                   |               |                   |
| CAUSATIVE ORGANISM FROM BLOOD CULTURE                |               |             |          | of Un         |                |                   |                   |               |                   |
| ASSOCIATED WITH CLABSI <sup>4</sup> , n (%)          |               |             | 0.22     | 50 Ount       |                |                   |                   | IIIII. III    |                   |
| Fungal                                               | 4 (66.7)      | 8 (26.7)    |          | 0             |                |                   |                   |               | հՈհենեն           |
| Gram Negative                                        | 0 (0.0)       | 6 (20.0)    |          | 00/1/1        | (/21/20        | 2/10/20           | 8/21/20           | 1/10/20       | 1/30/20           |
| Gram Positive                                        | 2 (33.3)      | 16 (53.3)   |          | Figure        | - Number       | of positivo sever | Date <sup>m</sup> | *             |                   |
| <sup>1</sup> IOR, interguartile range                |               |             |          | revers        | e transcrinta  | or positive sever | ain reaction r    | acory synuru  | al test results   |

svndrome coronavirus 2 reverse transcriptase polymerase chain reaction nasopharyngeal test results. For patients with multiple positive tests, only the first positive culture was included.

## DISCUSSION

- Blood culture policies did not change during COVID-19. However, nurses disclosed common lapses in practice secondary to staffing shortages:
  - 1. Using skin disinfectant for less time than manufacturer's recommendations
  - 2. Collecting serial cultures from same site
  - 3. Failing to collect multiple blood cultures
  - Obtaining blood cultures from CVC
- We suspect CLABSI rates increased for the following reasons
  - 1. More CVC placements in the emergency department; less likely to be sterile compared to placement in procedure rooms or intensive care unit
  - 2. Greater proportion of CVC lines placed in femoral vein, likely as a result of physicians attempting to reduce exposure to COVID-19 patients
- 18 (60%) patients from COVID-19 cohort tested positive for SARS-CoV-2. Studies suggest patients with COVID-19 have increased propensity to develop secondary infections.<sup>4</sup> However, even with excluding these patients, CLABSI rate still increased by 194%.
- Limitations included:
  - Small sample size in the pre COVID-19 cohort
  - No audits on CVC insertion or maintenance during COVID-19; all identified gaps were from interviews with healthcare workers that worked during the pandemic

## CONCLUSION

The data demonstrates higher rates of blood culture contamination and CLABSIs during the pandemic. Both rates peaked in April 2020 when the hospital's COVID-19 caseload was greatest. Reasons for such increases are likely attributed to stresses placed on the healthcare system, resource shortages and consistent surges of high acuity patients.<sup>2</sup>

The report justifies greater investment in infection prevention to accommodate patient quality care needs during a pandemic.

## REFERENCES

1. Haddadin Y, Annamaraju P, Regunath H. Central Line Associated Blood Stream Infections (CLABSI), 2020, https://www.ncbi.nlm.nih.gov/books/NBK430891/, Accessed July 25, 2020, 2020,

2. Adalja AA, Toner E, Inglesby TV. Priorities for the US Health Community Responding to COVID-19, JAMA 2020:323:1343-1344

3. National Healthcare Safety Network (NHSN): Patient Safety Component Manual. 2020. https://www.cdc.gov/nhsn/pdfs/pscmanual/pcsmanual\_current.pdf. Accessed September 15, 2020.

4. Langford BJ, So M, Raybardhan S, Leung V. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis. Clinical microbiology and infection 2020.

<sup>2</sup>Two patients had multiple central venous catheters Table 1. Baseline Patient Characteristics Between Two Cohorts