Rapid, Non-invasive Detection of Infection Using Plasma-based Next-Generation Sequencing for Microbial Cell-free DNA in Individuals Testing Negative for SARS-CoV-2 in a Pandemic Setting

Matthew Smollin PharmD, William V. La Via MD, Sudeb C. Dalai MD, PhD, Christiaan R de Vries MD, PhD, Ann MacIntyre DO, Asim A. Ahmed MD Karius, Inc., Redwood City, CA, USA

KariusDx.com

Contact: Matt.Smollin@kariusdx.com (727) 772-3973

KARIUS

Background

IDWeek Abstract: 395

The clinical presentation of patients with severe COVID-19 infection can be protracted and deteriorate to ARDS and multi-organ dysfunction with prolonged fever.¹ As such, there is clinical overlap with many infectious diseases especially those that cause pneumonia. Due to of the prevalence of COVID-19 illness amidst the pandemic, concerns about testing sensitivity and the attendant risk to health care personnel (HCP) delivering care, patients are frequently tested multiple times to ascertain that they are truly SARS-CoV-2 negative.^{2.4} Often, alternative diagnoses are not considered because some diagnostic modalities—such as bronchoalveolar lavage (BAL)—pose an unacceptable risk to the patient and/or HCP.⁵

Methods

We interrogated plasma for microbial cell-free DNA from 81 patients who were known to be SARS-CoV-2 negative. Clinical information is taken from information submitted with the test requisition or obtained at the time of result reporting from clinical consultations with the ordering provider. In each case, a plasma sample was analyzed with the Karius Test (KT). The KT was developed and validated in Karius' CLIA certified/CAP accredited lab and detects microbial cell-free DNA (mcfDNA), which can assist with the diagnosis of deep-seated infections. After mcfDNA is extracted and NGS performed, human reads are removed and remaining sequences are aligned to a curated database of >1000 organisms. Organisms present above a statistical threshold are reported. For > 85% of test results the time to result reporting is 24 hours from sample receipt. (see Figure 1)

Results

In a subset of 30 samples, we detected a broad range of pathogens in both pediatrics and adults. *Pneumocystis jirovecii* was the most common pathogen detected. We identified detections that were either unexpected in many of the patients or unable to grow or detect with standard of care lab tests. (see Table 1)

Next day results

Table 1. Broad Range of Karius Detected Pathogens

Case	Age Group	Detected Organism(s)	Type of Infection	Underlying Condition
1	Pediatric	Aspergillus fumigatus	Pneumonia	Chronic corticosteroids
2	Pediatric	Cunninghamella	Pneumonia	Aplastic anemia
3	Pediatric	Fusobacterium necrophorum	Pneumonia	None
4	Pediatric	Fusobacterium nucleatum	Pneumonia	None
5	Pediatric	Leptospira kirschneri	FUO	None
6	Pediatric	Mucor indicus	FUO/sinusitis	Stem cell transplantation
7	Pediatric	Pneumocystis jirovecii	Pneumonia	Acute Lymphocytic Leukemia (ALL)
8	Pediatric	Pneumocystis jirovecii	Pneumonia	Leukemia
9	Pediatric	Pneumocystis jirovecii	Pneumonia	Chronic immunosuppression
10	Adult	Aspergillus calidoustus	Nodular pneumonia	Fever/neutropenia
11	Adult	Aspergillus fumigatus	Nodular pneumonia	Solid Organ Transplant (SOT)
12	Adult	Aspergillus fumigatus	Pneumonia	Chronic immunosuppression
13	Adult	Burkholderia gladioli	Pneumonia	Lung Transplant
14	Adult	Coxiella burnetii	FUO	None
15	Adult	Histoplasma capsulatam	Nodular pneumonia	HIV (new Dx)
16	Adult	Legionella jordanis	Pneumonia	Solid Organ Transplant (SOT)
17	Adult	Legionella micdadei	Multifocal pneumonia	Chronic corticosteroids
18	Adult	Mycobacterium avium complex	FUO/necrotic pulmonary lesions	Unknown
19	Adult	Mycobacterium kansaii	Cavitary pulmonary lesions	None
20	Adult	Nocardia veterana	Pneumonia	Interstitial Lung Disease (ILD)
21	Adult	Pneumocystis jirovecii	Pneumonia	HIV
22	Adult	Pneumocystis jirovecii	Pneumonia	HIV (new Dx)
23	Adult	Pneumocystis jirovecii	Pneumonia	Multiple Myeloma
24	Adult	Pneumocystis jirovecii	Pneumonia	HIV
25	Adult	Pneumocystis jirovecii	Pneumonia	HIV (new Dx)
26	Adult	Pneumocystis jirovecii	Pneumonia	Chronic corticosteroids
27	Adult	Pneumocystis jirovecii	Pneumonia	Immunocompromised NOS
28	Adult	Pneumocystis jirovecii	Pneumonia	Polymyalgia rheumatica on steroids
29	Adult	Rhizopus oryzae	Fever w/ lung mass	Stem cell transplantation
30	Adult	Human papillomavirus	Pulmonary/endocardial mass-due to viral driven tumor	Myelodysplastic syndrome

Results

Conclusion

Open-ended, plasma-based NGS for mcfDNA with the KT provides a rapid, non-invasive method to diagnose deepseated infection like pneumonia. This broad-based test detected a wide range of pathogens – many unsuspected – in patients with severe pneumonia and other invasive infections during the COVID-19 pandemic. These detections highlight the utility of the test enabling improvements in patient management, earlier time to diagnosis with avoidance of additional workup and initiation of targeted antibiotic therapy.

References

 Zaim S, Chong JH, Sankaranarayanan V, Harky A. COVID-19 and Multiorgan Response. *Curr Prob Lardiol.* 2020;45(8):100618. doi:10.1016/j.cpcardiol.2020.100618
Z. Center for Disease Control and Prevention. Interim Guidance on Testing Healthcare Personnel for SARS-CoV-2. <u>https://www.cdc.eov/coronavirus/2019-ncov/hco/testing-balthcare.comed.html</u>

3. Arevalo-Rodriguez I, Buitrago-Garcia D, Simancas-Racines D, et al. False-negative results of initial RT-PCR assays for COVID-19: a systematic review. April 21, 2020 4. Yang Y, Yang M, Shen C, et al. Evaluating the accuracy of different respiratory specimens in the laboratory diagnosis and monitoring the viral shedding of 2019-nCoV infections. February 17, 2020

5. Center for Disease Control and Prevention. Clinical Questions about COVID-19: Questions and Answers. https://www.cdc.gov/coronavirus/2019-

Blauwkamp T., et al. Nat. Microbiol. 2019;4(4):663-674

The authors thank Varsha Baichwal for her contributions to the work

FUO=Fever of Unknown Origin; NOS = Not Otherwise Specified