# Meta-analysis of Randomized Control Trials Evaluating New Beta-Lactamase Combination Antibiotics

G.M. Wilson<sup>1</sup>, M.A. Fitzpatrick<sup>1,2</sup>, K. Walding<sup>1,2</sup>, B. Gonzalez<sup>1</sup>, M.L. Schweizer<sup>3,4</sup>, K. Suda<sup>5,6</sup>, C.T. Evans<sup>1,7</sup>

<sup>1</sup>Center of Innovation for Complex Chronic Healthcare (CINNCH) Hines Jr. Veterans Affairs Hospital, Hines, IL, <sup>2</sup>Loyola Medical Center, Maywood, IL,, <sup>3</sup>University of Iowa, College of Public Health <sup>4</sup> Center for Access and Delivery Research and Evaluation (CADRE), Iowa City VA Health Care System, Pittsburgh School of Medicine, Department of Medicine, Pittsburgh, PA, <sup>5</sup>University of Pittsburgh School of Medicine, Pittsburgh, PA, <sup>7</sup>Northwestern University Feinberg School of Medicine, Chicago, IL,

# Background

- Ceftolozane/ Tazobactam (C/T), Ceftazidime/ Avibactam (C/A), Meropenem/ Vaborbactam (M/V) and Imipenem/ Relebactam (I/R) are new combination beta-lactam/ beta-lactamase inhibitor antibiotics primarily used to treat multidrug-resistant (MDR) Gramnegative infections.
- This study synthesized outcomes of comparative observational studies and randomized control trials (RCTs) that evaluated clinical success of these antibiotics compared to other therapies.

### Methods

- PubMed, EMBASE, and Google Scholar were searched from January 1<sup>st</sup>, 2013 through September 2<sup>nd</sup>, 2020 for comparative observational studies and RCTs of C/T, C/A, M/V and I/R.
- Study and patient demographics were collected along with clinical success rates.
- Meta-analysis was used to determine the pooled clinical success rates of C/T, C/A, M/V, and I/R.
  - Clinical success was defined as the resolution of all signs and symptoms of infection such that no further intervention was needed.
- Heterogeneity and publication bias were assessed via l<sup>2</sup> values and funnel plots, respectively.

#### Results

Table1: Demographics of Included Articles

| Variable<br>Name                     | Randomized Control Trials (n=17) | Observational Studies (n=8) |
|--------------------------------------|----------------------------------|-----------------------------|
| Duration of<br>Study (mos)           | 23.0                             | 49.6                        |
| Sample Size                          | 8,238                            | 828                         |
| Location                             | Global=16<br>Asia=1              | USA=5<br>Spain=2<br>Italy=1 |
| Number of<br>Sites                   | 84.5                             | 8                           |
| Antibiotic<br>under<br>Investigation | C/A=8<br>C/T=3<br>I/R=3<br>M/V=2 | C/A=4<br>C/T=4              |

Figure 1: Diagram of Search Results

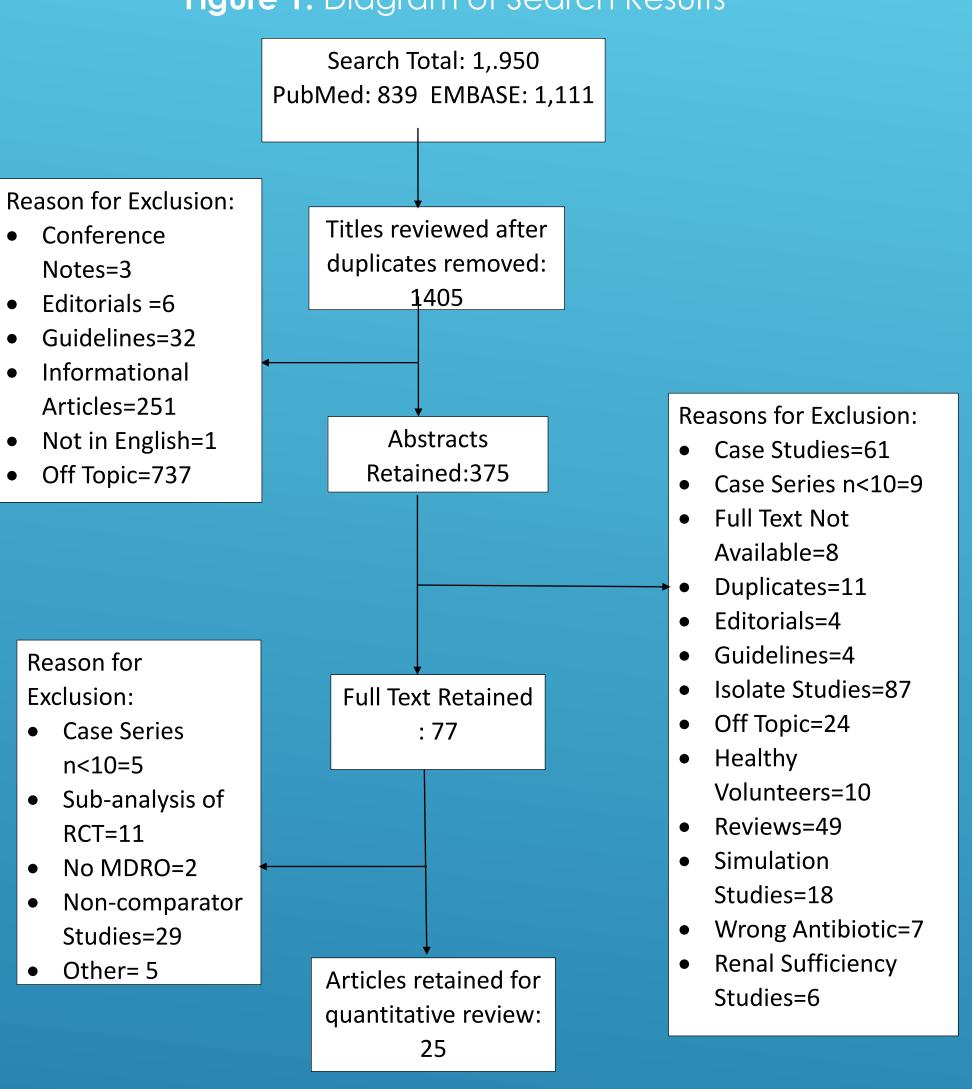



Figure 3: Pooled Results of Randomized Control Trials

|                                   | Experim    | ental    | Contr     | ol      |                          | Risk Difference      | Risk Difference                                   |
|-----------------------------------|------------|----------|-----------|---------|--------------------------|----------------------|---------------------------------------------------|
| Study or Subgroup                 | Events     | Total    | Events    | Total   | Weight                   | M-H, Random, 95% CI  | M-H, Random, 95% CI                               |
| Bradley, 2019                     | 45         | 50       | 18        | 19      | 2.7%                     | -0.05 [-0.18, 0.08]  | <del></del>                                       |
| Carmeli, 2016                     | 140        | 154      | 135       | 148     | 7.8%                     | -0.00 [-0.07, 0.06]  | +                                                 |
| Kaye, 2018                        | 174        | 192      | 157       | 182     | 7.7%                     | 0.04 [-0.02, 0.11]   | <del> </del>                                      |
| Lucasti, 2013                     | 70         | 85       | 79        | 89      | 4.0%                     | -0.06 [-0.17, 0.04]  | <del></del>                                       |
| Lucasti, 2014                     | 51         | 61       | 24        | 25      | 3.1%                     | -0.12 [-0.24, -0.00] | <del></del>                                       |
| Lucasti, 2016                     | 164        | 185      | 79        | 92      | 5.4%                     | 0.03 [-0.06, 0.11]   | <del></del>                                       |
| Mazuski, 2016                     | 429        | 520      | 444       | 523     | 11.1%                    | -0.02 [-0.07, 0.02]  | -                                                 |
| Motsch, 2019                      | 15         | 21       | 7         | 10      | 0.4%                     | 0.01 [-0.33, 0.36]   |                                                   |
| Qin, 2017                         | 119        | 143      | 135       | 152     | 6.0%                     | -0.06 [-0.14, 0.02]  | <del></del>                                       |
| Sims, 2017                        | 132        | 150      | 70        | 80      | 5.0%                     | 0.01 [-0.08, 0.09]   | <del></del>                                       |
| Solomkin, 2015                    | 323        | 389      | 364       | 417     | 10.3%                    | -0.04 [-0.09, 0.01]  |                                                   |
| Titov, 2020                       | 161        | 264      | 149       | 267     | 5.5%                     | 0.05 [-0.03, 0.14]   | +                                                 |
| Torres, 2019                      | 126        | 187      | 143       | 195     | 4.8%                     | -0.06 [-0.15, 0.03]  | <del></del>                                       |
| Vazquez, 2012                     | 24         | 28       | 29        | 36      | 1.5%                     | 0.05 [-0.13, 0.23]   | <del>-   • </del>                                 |
| Wagenlehner, 2015                 | 366        | 398      | 356       | 402     | 11.9%                    | 0.03 [-0.01, 0.08]   | <del>  -</del>                                    |
| Wagenlehner, 2016                 | 355        | 393      | 377       | 417     | 12.0%                    | -0.00 [-0.04, 0.04]  | +                                                 |
| Wunderink, 2018                   | 19         | 32       | 4         | 15      | 0.7%                     | 0.33 [0.05, 0.61]    | <del></del>                                       |
| Total (95% CI)                    |            | 3252     |           | 3069    | 100.0%                   | -0.01 [-0.03, 0.02]  | •                                                 |
| Total events                      | 2713       |          | 2570      |         |                          |                      |                                                   |
| Heterogeneity: Tau <sup>2</sup> = | 0.00; Chi² | = 25.09, | df = 16 ( | P = 0.0 | 7); I <sup>2</sup> = 369 | 6 <del>-</del>       | <del></del>                                       |
| Test for overall effect:          |            |          |           |         |                          | -1                   | -0.5 0 0.5<br>Old Abx Therapies New Abx Therapies |

Figure 2: Pooled Results of Observational Studies

|                                      | New Abx The                  | rapies    | Older Abx The      | rapies |        | Odds Ratio          | Odds Ratio                                                   |
|--------------------------------------|------------------------------|-----------|--------------------|--------|--------|---------------------|--------------------------------------------------------------|
| Study or Subgroup                    | Events                       | Total     | Events             | Total  | Weight | M-H, Random, 95% CI | I M-H, Random, 95% CI                                        |
| Ackley, 2020                         | 65                           | 105       | 18                 | 26     | 15.8%  | 0.72 [0.29, 1.81]   | <del></del>                                                  |
| Caston, 2017                         | 6                            | 8         | 8                  | 23     | 7.4%   | 5.63 [0.92, 34.57]  | <del>                                     </del>             |
| Fernandez-Cruz, 2019                 | 17                           | 19        | 27                 | 38     | 8.6%   | 3.46 [0.68, 17.57]  | <del></del>                                                  |
| Mills, 2019                          | 45                           | 62        | 36                 | 53     | 17.4%  | 1.25 [0.56, 2.79]   | <del>-  </del>                                               |
| Pogue, 2020                          | 81                           | 100       | 61                 | 100    | 19.8%  | 2.73 [1.44, 5.18]   | <del></del>                                                  |
| Shields, 2017                        | 11                           | 13        | 39                 | 96     | 9.1%   | 8.04 [1.69, 38.28]  |                                                              |
| van Duin, 2018                       | 35                           | 38        | 66                 | 99     | 11.8%  | 5.83 [1.67, 20.38]  |                                                              |
| Vena, 2020                           | 13                           | 16        | 18                 | 32     | 10.1%  | 3.37 [0.80, 14.18]  | <del></del>                                                  |
| Total (95% CI)                       |                              | 361       |                    | 467    | 100.0% | 2.56 [1.43, 4.58]   |                                                              |
| Total events                         | 273                          |           | 273                |        |        |                     |                                                              |
| Heterogeneity: Tau <sup>2</sup> = 0. | 34; Chi <sup>2</sup> = 14.67 | df = 7 (F | P = 0.04);  2 = 52 | %      |        |                     | 0.04 0.4 4 40 400                                            |
| Test for overall effect: Z           | = 3.17 (P = 0.00)            | (2)       |                    |        |        |                     | 0.01 0.1 1 10 100<br>Older Abx Therapies Newer Abx Therapies |

## Conclusion

- Among RCT's the novel antibiotics were non-inferior to the older antibiotic therapies
- In the observational studies there was a strong association between the newer antibiotics and odds of clinical recovery from infection.
- The 2020 ID&A CRE guidelines recommend the use of C/A, M/V, and I/R for the treatment of Carbapenem-resistant Enterobacteriaceae infections
- The guidelines also recommend the use of C/T, M/V, and I/R for the treatment of multi-drug resistant Pseudomonas aeruginosa infections.
- Additional studies are needed to further evaluate these drugs' effectiveness for treatment of MDR infections.

Acknowledgements: This work was supported by The Department of Veterans Affairs, Veterans Health Administration, Office of Research and Development, IIR 16-028 (PI: Evans, Charlesnika). The views expressed in this article are those of the authorized department of Veterans Affairs or the U.S. government.