1293

Sulbactam-durlobactam (ETX2514) Is Active Against Recent, Multidrug-Resistant Acinetobacter baumannii Clinical Isolates from the Middle East

EIENTASIS THERAPEUTICS

Abstract

Background: The incidence of infections caused by multidrug-resistant (MDR) Acinetobacter baumannii (Ab) is increasing at an alarming rate in certain regions of the world, including the Middle East. Sulbactam (SUL) has intrinsic antibacterial activity against Ab; however, the prevalence of β -lactamases in Ab has limited its therapeutic utility. Durlobactam (DUR, formerly ETX2514) is a diazabicyclooctane β-lactamase inhibitor with broad-spectrum activity against Ambler class A, C and D β-lactamases that restores SUL activity *in vitro* against MDR *Ab*. SUL-DUR is an antibiotic designed to treat serious infections caused by Acinetobacter, including multidrug-resistant strains, that is currently in Phase 3 clinical development. In global surveillance studies of >3600 isolates from 2012-2017, the MIC_{90} of SUL-DUR was 2 mg/L. Although surveillance systems to monitor MDR infections in the Middle East are currently being established, quantitative, prevalence-based data are not yet available. Therefore, the potency of SUL-DUR was determined against 190 recent, diverse *Ab* clinical isolates from this region.

Methods: 190 Ab isolates were collected between 2016 - 2018 from medical centers located in Israel (N = 47), Jordan (N = 36), Qatar (N = 13), Kuwait (N = 42), Lebanon (N = 8), Saudi Arabia (N = 24) and United Arab Emirates (N = 20). Seventy-five percent and 20.5% of these isolates were from respiratory and blood stream infections, respectively. Susceptibility to SUL-DUR and comparator agents was performed according to CLSI guidelines, and data analysis was performed using CLSI and EUCAST breakpoint criteria where available.

Results: This collection of isolates was 86% carbapenem-resistant and 90% sulbactam-resistant (based on a breakpoint of 4 mg/L). The addition of SUL-DUR (fixed at 4 mg/L) decreased the sulbactam MIC_{90} from 64 mg/L to 4 mg/L. Only 3 isolates (1.6%) had SUL-DUR MIC values of > 4 mg/L. This potency was consistent across countries, sources of infection and subsets of resistance phenotypes

Conclusions: SUL-DUR demonstrated potent antibacterial activity against recent clinical isolates of *Ab* from the Middle East, including MDR isolates. These data support the global development of SUL-DUR for the treatment of MDR Ab infections

Introduction

Sulbactam-durlobactam (SUL-DUR) is currently in Phase 3 clinical development for the treatment of infections caused by drug-resistant Acinetobacter baumanniicalcoaceticus complex (ABC) organisms. Sulbactam (SUL) is an approved βlactamase inhibitor (BLI) with antibacterial activity against Acinetobacter spp. due to its inhibition of PBP3, an enzyme required for cell wall biosynthesis¹. However, degradation of sulbactam by the β-lactamases present in most contemporary ABC isolates limits its clinical use. Durlobactam (DUR, ETX2514) is a diazabicyclooctane β -lactamase inhibitor (BLI) with potent activity against class A, C and D serine β -lactamases².

In global surveillance studies of over 1700 ABC isolates collected in 2016-2017, the addition of DUR reduced the MIC_{90} of SUL from 64 mg/L to 2 mg/L³. Here the activity of SUL-DUR was profiled against recent, diverse clinical Acinetobacter baumannii (Ab) isolates collected from seven countries located in the Middle East.

Methods

Broth microdilution susceptibility testing was conducted according to CLSI guidelines using cation-adjusted Mueller-Hinton broth⁴. Sulbactam-durlobactam was tested by dilution of sulbactam in the presence of a fixed concentration of 4 mg/L durlobactam. Testing of the 190 Ab isolates was performed at IHMA laboratories. Genomic DNA was extracted from select isolates and subjected to whole genome sequencing with an Illumina MiSeq V2 instrument and analysis using CLCBio Genomics Workbench v6.5 at Entasis Therapeutics.

Antimicrobial
Sulbactam
Sulbactam- Durlobactam
Amikacin
Cefepime
Ciprofloxacin
Colistin
Imipenem
Meropenem
Minocycline
Tigecycline

*Based on 2020 CLSI breakpoint criteria⁵. Colistin CLSI %S is based on %Intermediate NA = not available. MIC₉₀s are highlighted with blue squares. †Top concentration

S. McLeod¹, S. Moussa¹, M. Hackel², and A. Miller¹ ¹Entasis Therapeutics, Waltham, MA and ²IHMA, International Heath Management Associates, Schaumburg, IL, USA

Study Design

190 Acinetobacter baumannii (Ab) isolates from 7 countries and 21 medical centers (Collected in IHMA surveillance program)

	Country	N (sites)	N (isolates)	Year	
2	Israel	7	47	2016	
	Jordan	3	36	2017	
	Kuwait	3	42	2018	
Saudi Arabia	Lebanon	3	8		
United Arab Emirates	Qatar	1	24		
Jordan Israel Qatar	Saudi Arabia	3	24		
	U.A.E.	1	20		

Infection Source
Respiratory
Bloodstream
Urinary
Intraabdominal

Durlobactam Restores Sulbactam Activity Against Ab Isolates from the Middle East

74

% S	ensitive	Number (cumulative %) of isolates inhibited at MIC (mg/L)												
CLSI*	EUCAST	≤0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	>64
NIA	NIA					2	7	9	1	8	48	61	45	9
NA	NA					1.1	4.7	9.5	10	14.2	39.5	71.6	95.3	100
ΝΙΛ	NIA				3	15	46	87	36	2	1			
NA	INA				1.6	9.5	33.7	79.5	98.4	99.5	100			
30	24						9	17	12	7	11	7	11	116
50	24						4.7	13.7	20	23.7	29.5	33.2	38.9	100
15	NΛ			1	2	1	4	6	6	9	8	153†		
15	NA NA			0.5	1.6	2.1	4.2	7.4	10.5	15.3	19.5	100		
11	0			5	9	3	4		3	166†				
	U			2.6	7.4	8.9	11.1		12.6	100				
07	07				1	110	65	9	1		4†			
97	57				0.5	58.4	92.6	97.4	97.9		100			
11	17				21	3		2			1	22	69	72
14	14				11.1	12.6		13.7			14.2	25.8	62.1	100
4 5	15		1	7	10	6	3	1				15	62	85
15	15		0.5	4.2	9.5	12.6	14.2	14.7				22.6	55.3	100
67	NΙΔ			21	10	21	18	21	36	33	25	5†		
07	INA			11.1	16.3	27.4	36.8	47.9	66.8	84.2	97.4	100		
NI A	NIA	3	4	12	13	60	61	29	6	2†				
INA	INA	1.6	3.7	10	16.8	48.4	80.5	95.8	98.9	100				

Presented at IDWeek 2020

Activity of Sulbactam-Durlobactam by Demographic Sub-types

N (isolates)
143
39
7
1

XDR

ation	tested.

Country		MIC ₅₀	MIC ₉₀	Range
All	390	2	4	0.25 - 16
Israel	47	2	4	0.5 - 4
Jordan	36	2	4	0.5 - 4
Kuwait	42	2	4	0.25 - 16
Lebanon	26	1	2	0.25 - 32
Qatar	13	0.5	2	0.25 - 4
Saudi Arabia	24	2	4	0.5 - 8
United Arab Emirates	20	2	4	0.5 - 4
Resistance Phenotype*	Ν	MIC ₅₀	MIC ₉₀	Range
Carbapenem-NS	162	2	4	0.5 - 16
Colistin-resistant	5			1 - 4
MDR	57	2	4	1 - 16

Sulbactam-Durlobactam (mg/L)

*Carbapenem-NS, carbapenem non-susceptible; MDR, multidrug-resistant (non-susceptible to MEM, MIN, AMK); XDR, extremely drug-resistant (NS to MEM, MIN, AMK, CIP, FEP, SUL & R to COL)

--

Antibiogram and Whole Genome Sequencing Results for Isolates with Elevated SUL-DUR MIC Values

2 - 4

Country	Organiam	voiem Veer	Whele Conome Seguencing Results	MIC (mg/L)*							
Country	Organism	rear	whole Genome Sequencing Results	SUL-DUR	IPM	AMK	CIP	COL	MIN	TGC	
Kuwait	A. baumannii	2018	ADC-73; TEM-1; OXA-23; OXA-66; PBP3 [A515V]	16	>64	>64	>4	1	16	2	
Lebanon	A. baumannii	2017	ADC-73; TEM-1; OXA-23; OXA-66; PBP3 [A515V]; LpxA [M1K]	8	64	>64	>4	0.5	1	2	
Saudi Arabia	A. baumannii	2018	ADC-73; TEM-1; OXA-23; OXA-66; PBP3 [A515V]; PmrB [L160F]	8	64	>64	>4	0.5	16	1	

- The three isolates (3/190; 1.6%) with SUL-DUR MIC values ≥ 8 mg/L were subject to whole genome sequencing.
- All three isolates encoded a mutation near the active site of PBP3, the target of sulbactam inhibition.
- These results are consistent with global surveillance studies of SUL-DUR activity³.

Conclusions

- Durlobactam restored sulbactam antibacterial activity against a collection of largely drug-resistant A. baumannii clinical isolates collected from countries in the Middle East between 2016-2018 with a MIC₉₀ of 4 mg/L.
- Activity of sulbactam-durlobactam was consistent across seven countries located in the Middle East, years 2016-2018, and sources of infection.
- Less susceptible isolates encoded a mutation in PBP3 (target of sulbactam) and comprised <2% of the population.
- These data support development of sulbactam-durlobactam for the treatment of multidrug-resistant A. baumannii.

References

1. Penwell et al. (2015) Antimicrob Agents Chemother. 59: 1680-1689 2. Durand-Reville, T. et al. (2017) Nature Microbiol. 2:17104 3. McLeod et al. (2020) Antimicrob Agents Chemother. 64:e02534-19 4. CLSI M07, 11th ed. 2018. 5. CLSI M100, 30th ed. 2020.

Entasis Therapeutics 35 Gatehouse Dr. Waltham, MA 02151 1-781-810-0121 alita.miller@entasistx.com

Neer	N	Sulbactam-Durlobactam (mg/L)						
rear	N	MIC ₅₀	MIC ₉₀	Range				
2016	45	2	4	0.25 - 4				
2017	71	2	4	0.5 - 8				
2018	74	2	4	0.25 - 16				
Infection Source	Ν	MIC ₅₀	MIC ₉₀	Range				
Respiratory	143	2	4	0.25 - 16				
Urinary	7			0.5 - 4				
Bloodstream	39	2	4	0.5 - 4				
Intra-abdominal	1			1				

Activity of SUL-DUR was consistent across all the countries included in the study, years 2016-2018, infection source and antibiotic resistance phenotypes.

*IPM, imipenem; AMK, amikacin; CIP, ciprofloxacin; COL, colistin; MIN, minocycline; TGC, tigecycline.