

Evaluating the risk factors in postoperative infections following hysterectomy procedures: is antibiotic prophylaxis the issue?

Stacie Yi, Sumeet Jain, and Thien-Ly Doan

Department of Pharmacy, Long Island Jewish Medical Center, New Hyde Park, NY

Contact information Thien-Ly Doan tdoan@northwell.edu

Tel – (718) 470-7428 Fax – (718) 470-7595

INTRODUCTION

- Post-hysterectomy surgical site infection (SSI) is a metric tied to hospital ranking and financial penalties
- Infectious complications are associated with an additional financial burden and length of stay for patients
- Appropriate antibiotic prophylaxis may reduce post-hysterectomy SSIs

STUDY OBJECTIVES

- To evaluate the appropriateness of antibiotic prophylaxis for hysterectomy procedures in patients with postoperative infections
- To identify risk factors associated with post-hysterectomy SSIs (i.e., steroid use, previous surgery, comorbidities, type of hysterectomy procedure)
- To evaluate patient outcomes (i.e., hospital length of stay, 90-day readmission)

METHODS

- Conducted an IRB-approved, single center 1:1 case-control study
- Matched infected with non-infected cases based on year of procedure and performing surgeon between 1/2013 to 7/2019
- Study arms
 - Cases: diagnosed with infection(s) attributable to hysterectomy procedure
- Controls: not diagnosed with infection attributable to hysterectomy procedure
- Data was collected using electronic medical records (e.g., demographics, surgery length and approach, performing surgeon, antimicrobials selection, dosing, timing, and re-dosing, hospital length of stay (LOS), readmission, and mortality)

Inclusion criteria

 Subjects aged 18 years of age with performed hysterectomy at Long Island Jewish Medical Center

Exclusion criteria

Subjects that did not receive any antimicrobial prophylaxis

Statistical analysis

- Descriptive statistics were used to describe demographic and clinical factors
- Chi-square and/or Fisher's exact test, as appropriate, was used to compare categorical factors
- McNemar's test was used to test for differences in proportion of patients receiving inappropriate treatment within matched pairs
- The Wilcoxon signed-rank test was used to compared LOS

Baseline Characteristics N = 86	Controls, n = 43	Cases, n = 43
Age – years (mean ± SD)	56.0 ± 10.6	57.1 ± 14.4
BMI – kg/m² (mean)	33.0 ± 8.1	33.1 ±9.0
Race – n (%) Caucasian African American	24 (55.8) 7 (16.3)	19 (44.2) 12 (27.9)
Comorbidities Diabetes Malignancy Anemia Asthma	9 (20.9) 20 (46.5) 4 (9.3) 10 (23.3)	9 (20.9) 24 (55.8) 10 (23.3) 6 (14.0)
Allergies – n (%) Penicillin	7 (16.3) 6 (14.0)	16 (37.2) 12 (27.9)

Procedural Characteristics	Controls, n = 43 n (%)	Cases, n = 43 n (%)
Type of hysterectomy Total hysterectomy Supracervical hysterectomy Radical hysterectomy	36 (83.7) 6 (14.0) 1 (2.3)	35 (81.4) 4 (9.3) 4 (9.3)
Perioperative blood transfusion	0 (0)	7 (16.3)
Duration in minutes (mean ± SD)	209.4 ± 75.4	225.1 ± 98.8
Inappropriate antibiotic prophylaxis Cefazolin underdose Gentamicin underdose Clindamycin underdose Cefotetan overdose	3 (6.9) 1 (2.3) 2 (4.7) 0 (0) 0 (0)	13 (30.2) 5 (11.6) 7 (16.3) 2 (4.7) 1 (2.3)

Inappropriate Intraoperative Re-dosing 8 Controls 6 Overdose Omission 4 2 Cefazolin Clindamycin Cefotetan Cases Controls Cases Cases Cases Cases Cases Cases Controls Cases Controls Controls Controls Cases Ca

Prophylaxis Stratified by Infection Type	Appropriate Prophylaxis	Inappropriate Prophylaxis	P-value
Type of Infection, n (%)			
Superficial wound	5 (22.7)	3 (14.3)	0.70
Intraabdominal/pelvic	18 (81.8)	17 (81.0)	1
Other	0 (0)	1 (4.8)	0.49

Outcome Measures	Controls, n = 43	Cases, n = 43	P-value
Mean LOS in days	2.29	2.35	0.375
Mortality – n (%)	0 (0)	0 (0)	NS
90-day hospital readmission	0 (0)	37 (86%)	< 0.0001

STUDY LIMITATIONS

- Retrospective chart review
- Small sample size
- Certain outcomes (e.g., glucose control, body temperature) not assessed
- Infections not entered in the reporting in the National Healthcare Safety Network (NSHN) were not evaluated

DISCUSSION

- Education regarding dosing of antibiotics is warranted
- Cefazolin dosing in obesity
- Use of weight-based gentamicin dosing
- Need for re-dosing of antibiotics if procedure exceeds 2 half-lives of drug or if excessive blood loss (> 1500 mL) is present

CONCLUSIONS

- No statistical significant association between antibiotic prophylaxis and infection observed
- Incidence of inappropriate prophylaxis was higher in the cases
- Education of prescribers on antibiotic prophylaxis and re-dosing is needed