

TRANSMITTED ANTIRETROVIRAL DRUG RESISTANCE OVER A PERIOD OF 11 YEARS AT A SINGLE CENTER IN SOUTHEAST, USA

RESULTS

Olga M. Klibanov¹, Chris Gillette², Tagbo J. Ekwonu³ ¹Wingate University School of Pharmacy, Wingate, North Carolina, USA ²Wake Forest School of Medicine, Winston Salem, North Carolina, USA ³Eastowne Family Physicians, Charlotte, North Carolina, USA

BACKGROUND

- The prevalence of transmitted drug resistant mutations in the United States is 19-33%.¹⁻³
- Integrase strand transfer inhibitors (INSTIs) have recently become the most widely prescribed class of antiretrovirals (ARVs) for the treatment of HIV; however, few studies have described the trends in the prevalence of resistance to NRTIs, NNRTIs, PIs, and INSTIs.
- This study sought to assess the trends in the prevalence of TDRMs over a period of 11 years at a single center in Charlotte, NC

OBJECTIVES

- To examine the incidence of TDRMs during 2008-2019 at a single institution
- To examine the association between TDRMs and year as well as type of therapy

METHODS

- All treatment-naïve HIV-1 infected adults (2008-2019), who had baseline genotype testing performed, were retrospectively evaluated
- Analysis of the HIV pol, protease, and integrase genes was performed by LabCorp laboratory
- Resistance was defined based in International AIDS Society 2019 definition and Stanford University's HIV Drug Resistance Database.
- Clinical and patient characteristics were compared between patients who were screened between 2008 through 2013 and patients screened between 2014-2019 using independent samples t-tests, Wilcoxon Mann-Whitney tests, and chi-square statistics, where appropriate.
- Relative risk and multivariable logistics regression were used to analyze data
- All tests were two-tailed with an alpha less than 0.05 indicating statistical significance.
- All analyses were conducted using SAS v9.4 (Cary, NC).

RESULTS

Table 1. Demographics (n=456)

Age [mean (SD)]	33.5 (11)
Male, n (%)	363 (80%)
White, n (%) Black, n (%) Hispanic, n (%) Asian, n (%)	36 (8%) 391 (86%) 24 (5%) 3 (1%)
Baseline HIV-1 RNA [log10, mean (SD)]	4.6 (0.8)
CD4 ⁺ count [cells/mm ³ , mean (SD)]	359 (265)
Elapsed time from HIV diagnosis to resistance testing [months, median (IQR)]	3 (11)

Figure 2. Annual Rates (%) of TDRMs Among Classes of Antiretrovirals, 2008-2019 (n=88)

- Patients presenting 2014-2019 were younger, than patients who presented 2008-2013 (31.96 years v. 34.71 years, t=-2.65, DF=454, p=0.008), had slightly higher baseline CD4+ counts (38.99, v. 337.8, t=2.07, DF=454, p=0.04), were more often male (Chi-square=17.99, p<0.0001), and were more likely to initiate treatment with INSTI-based treatment (Chi-square=287.99, DF=3, p<0.0001).
- Figure 1 represents the annual cumulative incidence rate from 2008-2019.
 > The total number of cases of TDRMs was 19.30% (n=88).
 > There has been a steady increase in annual cumulative incidence in
 - incident resistance since 2008, with a peak in 2018 (46,667/100,000). > The relative risk (RR) for TDRMs was 1.76 (95% CI=1.42-2.17).
 - For patients who were tested for resistance within the first year of their diagnosis (n=349), the RR was 1.77 (95% CI=1.42-2.21).
- Compared to patients assessed for TDRM within a year of diagnosis (n=456) and whose initial treatment was NNRTI-based, patients who started treatment on PI-based therapies (OR=5.34, 95% C1=2.17-13.11) or INSTIbased therapies (OR=4.00, 95% C1=1.43-11.20) had significantly greater odds of TDRMs, controlling for age, gender, race, baseline CD4+ count, HIV RNA, hepatitis B status, hepatitis C status, and time period of testing.
- For all patients who started on treatment (n=432), those who began with INSTI treatment had significantly lower odds of TDRM (OR=0.25, 95% Cl=0.08-0.72) compared to those who started on NNRT-treatment controlling for age, gender, race, etc.
- Figure 2 describes the annual rates of TDRMs by year and drug class
 > Over the 11-year study period NNRTI resistance was most common (67/88; 76%), followed by NRTI (9/88; 10%), PI (4/88; 5%), and INSTI (2/88; 2%).
- Dual class resistance was noted in 6 (7%) patients over the 11-year study period, one of whom had TDRMs in the INSTI and NNRTI classes (2015).

CONCLUSIONS

- The overall incidence of TDRMs in our clinic of 19.3% mirrors national surveillance data, with notably higher rates of resistance in the last 2 years.
- Prescribing of the INSTI-based regimens over the last 5 years reflects the 1st line place of therapy of these drugs according to the DHHS and IAS guidelines and is appropriate due to the continued increase in the incidence of NNRTI TDRMs.

REFERENCES

- Henegar C et al. Trends and characteristics of HIV-1 drug resistance in the United States (2012-2018). Poster #0521; CROI 2020.
- Feng J et al. Transmitted drug resistance in people living with diagnosed HIV in California. Poster #3184; CROI 2020.
- McClung et al. Integrase and other transmitted HIV drug resistance 23 U.S. jurisdictions, 2013-2016. Poster 3337; CROI 2019.