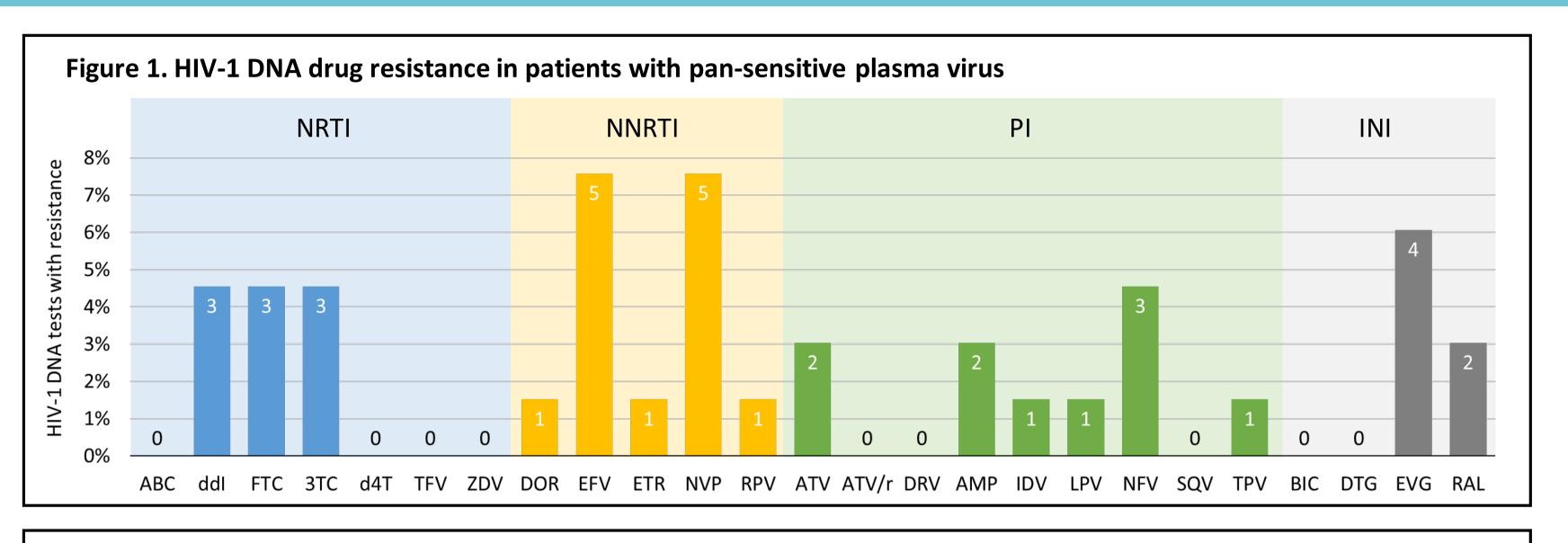
Poster 911040

HIV-1 DNA Testing Identifies Drug Resistance in Viremic Patients With Pan-Sensitive Plasma Virus

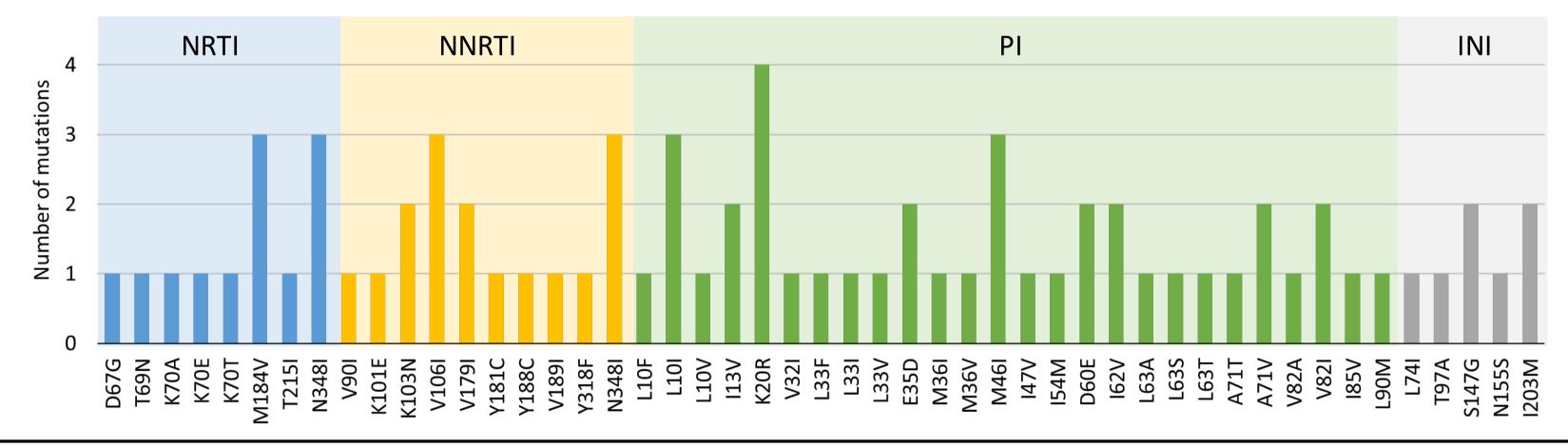
Dusica Curanovic, PhD;^{1,a} Sharon K. Martens, MN;¹ Milka A. Rodriguez, PhD;¹ Hunter A. Hammill, MD;² Christos J. Petropoulos, PhD;¹ Charles M. Walworth, MD¹ ¹Monogram Biosciences, Laboratory Corporation of America[®] Holdings, South San Francisco, CA, USA; ²The Woman's Hospital of Texas, Houston, TX, USA; ^acuranod@labcorp.com

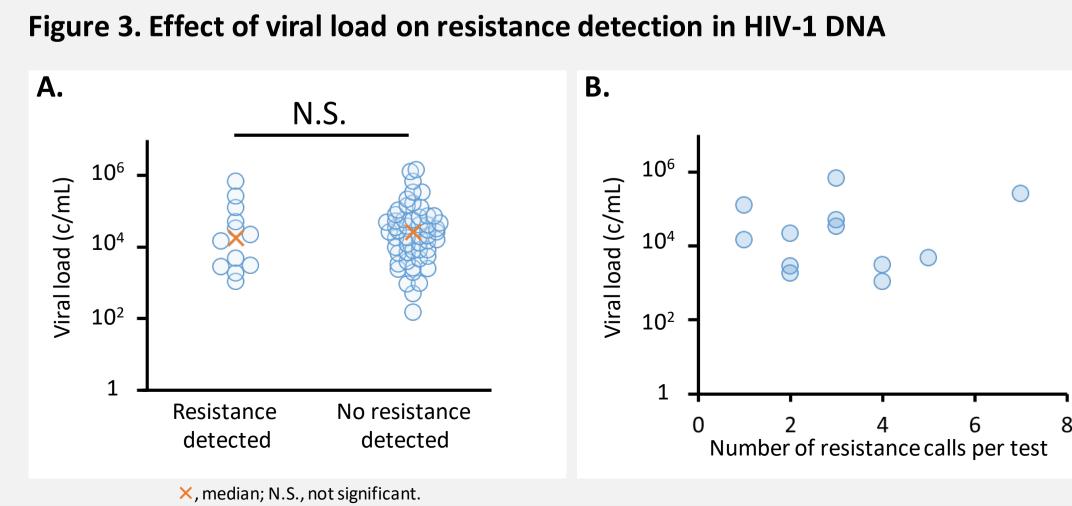
I. Background

- Patients who discontinue antiretroviral therapy (ART) often present with wild-type plasma virus due to gradual loss of drug resistance mutations (DRMs) in the absence of selective drug pressure^{1,2}
- Past drug resistance can emerge upon resumption of therapy, hinder virologic suppression, and jeopardize future treatment options³
- HIV-1 DRMs are archived within latently infected peripheral blood mononuclear cells (PBMCs) and can be identified using HIV-1 DNA drug resistance testing⁴


II. Methods

- Plasma virus and PBMC samples were collected on the same day from patients with viremia
- HIV-1 drug resistance was assessed using PhenoSense GT[®] Plus Integrase on plasma virus and GenoSure Archive[®] on PBMC samples (Monogram Biosciences)
- Plasma virus with genotypic sensitivity to all antiretrovirals (ARVs) was identified and test results compared to the paired PBMC test
- "Resistance" and "resistance possible" assessments on test reports were scored as resistant to drug
- The impact of viral load on resistance detection was assessed using Mann-Whitney U and Pearson correlation


III. Results


Table 1. Patient and virus characteristics

Characteristic	n (% or range)
Total test pairs	66
Unique patients Female	64 59 (92%)
Mean age, years	36.6 (18.8 - 56.7)
HIV-1 Subtype B C D G AG	60 (93.8%) 1 (1.6%) 1 (1.6%) 1 (1.6%) 1 (1.6%)
Mean viral load at resistance testing, copies/mL	109,618 (150 - 1,470,000)

Figure 2. Drug resistance mutations identified in HIV-1 DNA but not in plasma virus

- Median viral load at time of resistance testing was not different between patients with HIV-1 DNA tests reporting resistance and those not reporting resistance (Figure 3A; p = .660)
- Viral load at time of resistance testing did not correlate with the number of resistance calls on the test (Figure 3B; *r* = .173, *p* = .590)

Table 2. Drug resistance characteristics

Characteristic	n (%)
HIV-1 DNA resistance detected	13/66 (20%)
NRTI	3 (4.5%)
NNRTI	6 (9.0%)
PI	3 (4.5%)
INI	4 (6.0%)
2-class resistance	3 (4.5%)
1-class resistance	10 (15.0%)
DRMs detected*	
Plasma virus total	179
Unique to plasma virus	5
HIV-1 DNA total	260
Unique to HIV-1 DNA	72

DRM, drug resistance mutation; INI, integrase inhibitor; NRTI, nucleos(t)ide reverse transcriptase inhibitor; NNRTI, non-nucleoside reverse transcriptase inhibitor; PI, protease inhibitor.

*DRMs affecting both NRTI and NNRTI susceptibility were counted only once.

IV. Summary and Conclusion

- HIV-1 DNA testing identified drug resistance in 20% of cases when plasma virus demonstrated pan-sensitivity (Figures 1 and 2, Table 2)
- In viremic patients with pan-sensitive plasma virus, HIV-1 DNA testing can identify drug resistance regardless of viral load level at time of testing (Figure 3)
- Assessment of drug resistance in HIV-1 DNA may be useful in designing suppressive ARV regimens for patients whose plasma virus reverts to wild-type due to lack of treatment adherence and/or continuity of care

V. References

- **1.** Devereux HL, et al. AIDS. 1999;13(18):F123-F127.
- **2.** Deeks SG, et al. N Engl J Med. 2001;344(7):472-480.
- 3. Tobin NH, et al. J Virol. 2005;79(15):9625-9634.
- 4. Ellis KE, et al. Open Forum Infect Dis. 2019;7(1):ofz533.

VI. Acknowledgements

We thank the Monogram Biosciences Clinical Reference Laboratory for performing all assays and the Client Services team for their assistance.