AT-527, an Oral Purine Nucleotide Prodrug Exhibiting Potent *In Vitro* Antiviral Activity Against Human Coronaviruses, Including SARS-CoV-2

S.S. GOOD*, A. MOUSSA, X.J. ZHOU, K. PIETROPAOLO, J.P. SOMMADOSSI

Atea Pharmaceuticals, Inc., Boston, MA, USA

*Email: good.steven@ateapharma.com

Introduction

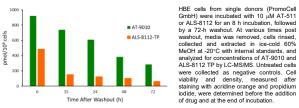
Coronaviruses (CoVs) are the causative pathogens of several human diseases, including seasonal respiratory infections (HCoV-229E and HCoV-OC43), Middle East respiratory syndrome (MERS-CoV), severe acute respiratory syndrome (SARS-CoV) and the novel CoV recently identified as the virus responsible for the current COVID-19 pandemic, SARS-CoV-2. AT-527, currently in Phase 2 clinical trials, has demonstrated potent activity and a well-tolerated safety profile in HCV-infected subjects. Here we report the *in vitro* activity of AT-511, the free base form of AT-527, against SARS-CoV-2 and other CoVs. We also show that after dosing with the prodrug, AT-9010, the active triphosphate (TP) of AT-527, is formed in human airway epithelial (HAE) cells *in vitro*, and non-human primate (NHP) lung *in vivo*. Prediction of human tissue levels based on these data suggest that lung intracellular levels of AT-9010 will exceed the *in vitro* EC₂₀ of AT-511 against SARS-CoV-2 throughout BID oral therapy at 550 mg AT-527.

Results

In Vitro Potency and Cytotoxicity of AT-511 and Other Oral Drugs Against Several Coronaviruses

Virus	Cell line	Compound	Cytopathic Effect Assay		Virus Yield Reduction	Selectivity Index
(genus)			EC _{so} (μM)	СС ₅₀ (µМ)*	Assay EC₀₀ (µM)	(CC ₅₀ /EC ₉₀)
HCoV-229E	BHK-21	AT-511 sofosbuvir	1.8 ± 0.3 (2) >100	>100 >100	ND	>55 ^b 0
(alpha)	Huh-7	luh-7 chloroquine	1.7 ± 0.1 (2) 7.8 6.0	>86 28 16	1.2 ± 0.1 (2) <0.050 <0.037	>72 3.6 ^b 2.6 ^b
HCoV-OC43 (beta)	Huh-7	AT-511	ND°	>86	0.5 / <0.03	>170/>3100
	RD	AT-511	2.8	>86	2.2	>38
MERS-CoV (beta)	Huh-7	AT-511	26 ± 15	>86	37 ± 27	>2.3
SARS-CoV (beta)	Huh-7	AT-511	ND°	>86	0.3	>250
SARS-CoV-2 (beta)	HAE	AT-511 N ⁴ -hydroxycytidine	ND°	>86ª >19ª	0.5 ± 0.1 (3) 3.9	>160 >4.9

The activity of AT-511 and other antiviral compounds was measured in cells infected with different convariuses to determine the effective concentration required to achieve 50% inhibition (EC₄₀) of the virus-induced cytopathic effect (CPE), the concentration to reduce virus yield by 1 log₁₀ (EC₄₀) and the cytotoxic concentration of the drug to cause death to 50% of viable cells without virus (CC₄₀). Differentiated normal human airway epithelial (HAE) cells (EpiLiNawy¹¹ MAR-100 or AIR-112) were prepared by MATFe Corporation (Ashand, MA) from a single donor. Values represent results from single or multiple [mean ±SD (n)] experiments.

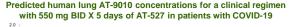

*Highest concentration tes

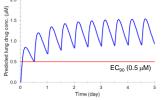
^bCC₅₀/EC₅₀

Not determined because there was no cytopathic effect with this virus in these cells dCytotoxicity assessed by visual inspection of cell monolayers

- * AT-511 exhibited a mean EC₉₀ value of 0.5 μM against SAR-CoV-2 and similar potencies against HCoV-229E, HCoV-OC43 and SARS-CoV, with no cytotoxicity up to a concentration of 100 μM.
- * N⁴-hydroxycytidine, shown to inhibit SARS-CoV-2 replication (1), had an EC _{90} of 3.9 μM in the same HAE cell model.

Triphosphate Concentrations in Primary Human Bronchial Epithelial (HBE) Cells Incubated with 10 µM AT-511 or ALS-8112


- Substantial levels (~700 μM) of AT-9010, the active triphosphate of AT-511, were measured in HBE cells after an 8-h incubation.
- Two-fold more AT-9010 was formed from AT-511 compared to ALS-8112, a drug clinically effective against respiratory syncytial virus with an *in vitro* EC₉₀ value of 1.3-2.7 μM in RSV-infected human airway epithelial (HAE) cells (2).
- 72 h after drug washout, AT-9010 levels were almost 5-fold more than ALS-8112 TP levels due to the longer half-life of AT-9010 (39 h) as compared to the TP of ALS-8112 (6-8 h).


Actual (NHP) and predicted (human) tissue levels of AT-9010

Species	Intracellular AT-9010 concentrations at 12 h post dose (μM)				
species	Liver	Kidney	Lung		
NHP	0.09	0.13	0.14		
Human	0.62	0.91	0.98		

Male non-naïve cynomolgus monkeys, ≥ 2 years old and 2 kg BW, were dosed by oral gavage twice a day (BID) with AT-527 to achieve steady state levels: 60 mg/kg loading dose followed by 30 mg/kg every 12 h for 3 days. This regimen approximated allometrically to a human regimen of 1100 mg LD + 550 mg BID. Tissue samples were collected 12-h post last dose, homogenized on ice in a 70% MeOH solution with internal standards, and centrifuged. Aliquots of the supermatants were analyzed for AT-s010 concentrations by LC-MS/MS.

Predictions of human tissue levels were based on an observed ratio of 7:1 for AT-9010 concentrations in human versus NHP primary hepatocytes incubated with 10 μM AT-511 over 24 h (3).

The kinetics of human lung AT-9010 levels were simulated for a 550 mg BID dose regimen for 5 days. Since plasma AT-273 serves as a surrogate marker of intracellular AT-9010, the simulation was performed using published plasma AT-273 data from subjects given daily 550 mg doses of AT-527 (4) and multiplied by 1.6 based on the observed NHP lung-to-liver AT-9010 concentration ratio (see Table) and assuming its applicability to humans. With BID dosing, the predicted AT-9010 steady-state lung peak and trough levels were 1.55 and 0.94 u/M

- Simulated AT-9010 levels consistently exceeded the *in vitro* EC₉₀ of AT-511 for inhibiting replication of SARS-CoV-2 in HAE cells.
- The predicted trough level of lung AT-9010 based on simulation was approximately 0.9 μM, which is in close agreement with the predicted trough of 0.98 μM (see Table) based on *in vivo* tissue distribution data in NHP.

Conclusions

- * AT-511, the free base of AT-527, has potent antiviral activity against several CoVs, including SARS-CoV-2 (EC_{s0} = 0.5 μM)
- Substantial formation of the active TP metabolite of AT-527 in HBE cells is consistent with the potency of the drug against SARS-CoV-2 replication in the HAE tissue model.
- Given that these cell types are actual targets of infection in COVID-19 patients, the potency of AT-527, combined with its favorable safety profile previously established in HCV-infected subjects, suggests that AT-527 may be highly efficacious in treating COVID-19.

References

 Sheahan TP et al. (2020) An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 and multiple endemic, epidemic and bat coronavirus. bioRxiv, doi:10.1101/2020.03.19.997890

- Deval J et al (2015) Molecular Basis for the Selective Inhibition of Respiratory Syncytial Virus RNA Polymerase by 2-Fluoro-4 Chloromethyl-Cytidine Triphosphate. PLoS Pathog 11:e1004995
- Good SS et al. (2020) Preclinical evaluation of AT-527, a novel guanosine nucleotide prodrug with potent, pan-genotypic activity against hepatitis C virus. PLoS One 15:e0227104.
- Berliba E et al. (2019) Safety, pharmacokinetics and antiviral activity of AT-527, a novel purine nucleotide prodrug, in HCV-infected subjects with and without cirrhosis. Antimicrob Agents Chemother 63:e01201-19.

Acknowledgements

Disclosures: All the authors are employees of Atea Pharmaceuticals. We thank Dr. Kerry-Ann da Costa for her assistance in preparing this poster presentation