

Health Science Center at Houston

Dynamics of Enterococcus faecalis cardiolipin synthase gene expression reveal compensatory roles in daptomycin resistance

April H. Nguyen^{1,2}, Vinathi Polamraju^{1,2}, Truc T. Tran^{1,2}, Diana Panesso^{1,2}, Ayesha Khan^{1,2}, Eugenia Mileykovskaya ^{2,5}, Heidi Vitrac⁵, Cesar A. Arias¹⁻⁴

¹Department of Internal Medicine, Division of Infectious Diseases, McGovern Medical School, Houston, Texas, USA ²Center for Antimicrobial Resistance and Microbial Genomics, McGovern Medical School, Houston, Texas, USA ³Center for Infectious Disease, University of Texas Health Science Center School of Public Health, Houston, Texas, USA ⁴Universidad El Bosque, Bogota, Colombia ⁵Department of Biochemistry and Molecular Biology, McGovern Medical School, Houston, Texas, USA ⁶Department of Biosciences, Rice University, Houston, TX, USA

Abstract

Background: Daptomycin (DAP) is a lipopeptide antibiotic targeting membrane anionic phospholipids (APLs) at the division septum¹, and resistance (DAP-R) has been linked to mutations in genes encoding i) the LiaFSR stress response system or its effector LiaX, and *ii*) cardiolipin synthase (Cls) ^{2,3}. Activation of the *E. faecalis* (Efs) LiaFSR response is associated with DAP-R and redistribution of APL microdomains away from the septum, and cardiolipin is predicted to be a major component of these APL microdomains ^{1,7}. Efs harbors two putative cls genes, cls ¹ and cls2. While changes in Cls1 have been implicated in DAP-R, the exact roles of each enzyme in resistance are unknown. We aim to characterize the contributions of Cls1 and Cls2 in the development of DAP-R.

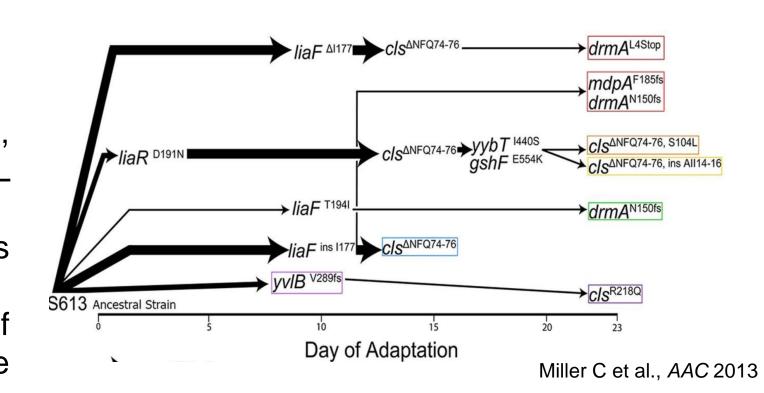
Methods: cls1 and cls2 were deleted individually and in tandem from DAP-S Efs OG117⁴ and DAP-R *Efs* OG117∆*liaX* (a DAP-R derivative with an activated LiaFSR response). Mutants were characterized by DAP minimum inhibitory concentration (MIC) using E-test on Mueller-Hinton II agar and localization of APL microdomains with 10-N-nonyl-acridine orange staining⁶. Quantitative PCR (qRT-PCR) was used to study gene expression profiles of *cls1* and *cls2* in *Efs* OG117∆*liaX* relative to *Efs* OG117 across the cell growth cycle.

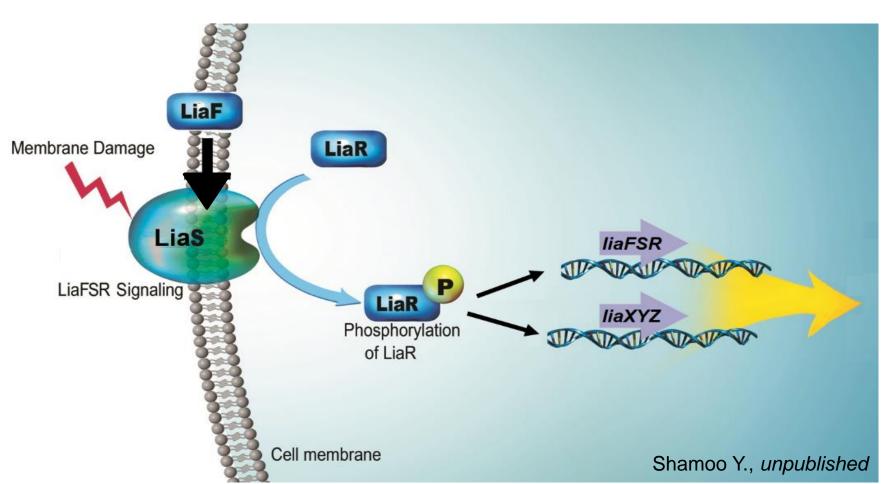
Results: qRT-PCR revealed differential expression profiles of *cls1* and *cls2* associated with DAP-R. cls1 was highly upregulated in stationary phase concurrent with a decrease in cls2 expression. However, independent deletion of cls1 or cls2 in the DAP-R background resulted in no significant changes in DAP MICs or localization of APL microdomains (remaining non-septal). Further studies revealed that cls2 expression is upregulated upon deletion of cls1 in both the DAP-S and DAP-R background, suggesting a potential compensatory role for Cls2. Double deletion of both cls genes in the DAP-R strain decreased DAP MIC restored the septal localization of APL microdomains.

Conclusions: Cls1 is the major and predominant enzyme involved in cell membrane adaptation associated with the development of DAP-R in *E. faecalis*. However, we describe a novel compensatory and overlapping role for cardiolipin synthases to ensure bacterial survival upon attack from antimicrobial peptides and related antibiotics.

Background

Daptomycin (DAP):

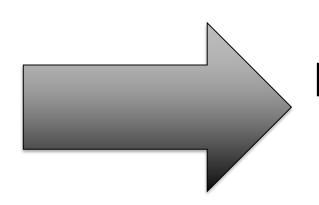

- Lipopeptide antibiotic
- Used in multi-drug resistant enterococcal infections
- Targets anionic phospholipids (APL) in cell membrane at division septum¹
- Disrupts cell division and lipid biogenesis⁵


DAP-Resistance (DAP-R):

- Mediated by LiaFSR^{2,3}
- Causes re-distribution of APL away from septum as visualized with 10-n-nonyl acridine orange (NAO)¹
- LiaY may be involved in membrane adaptation through unknown downstream partners

Cardiolipin synthase (CIs):

- E. faecalis: cls1 and cls2
- Synthesizes cardiolipin, proposed component of APL microdomains^{6,7}
- mutations DAP-R-associated found in cls1^{2,3}
- Cls may act in downstream of LiaY in mediating membrane adaptation

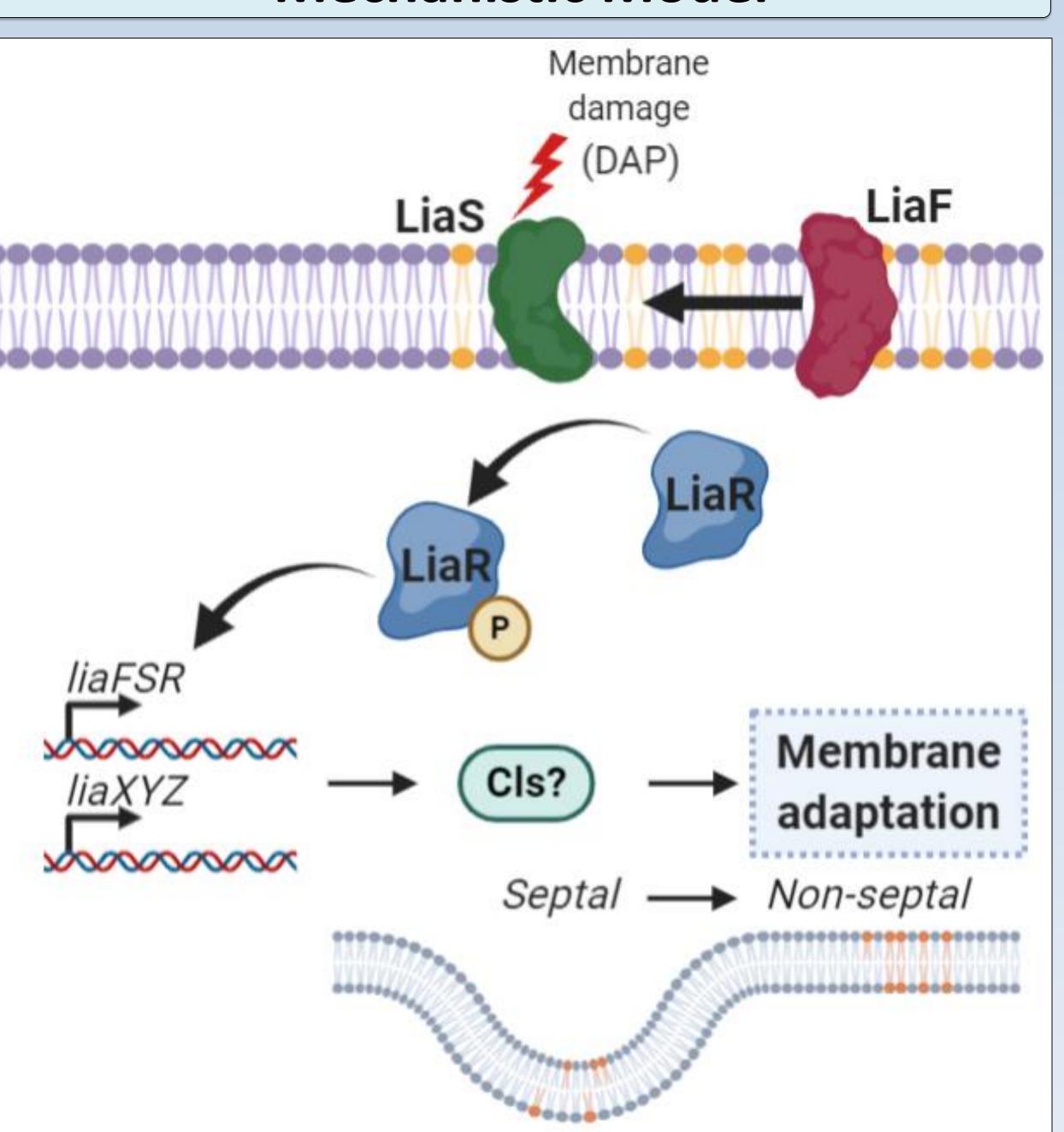


	OG1RF	∆ <i>liaX</i> 289	289∆ <i>liaYZ</i>
DAP MIC (ug/mL)	2	12	8
APL microdomain localization	Septal	Redist.	Septal

Aim

Cardiolipin Synthase?

Activation of LiaFSR/LiaXYZ

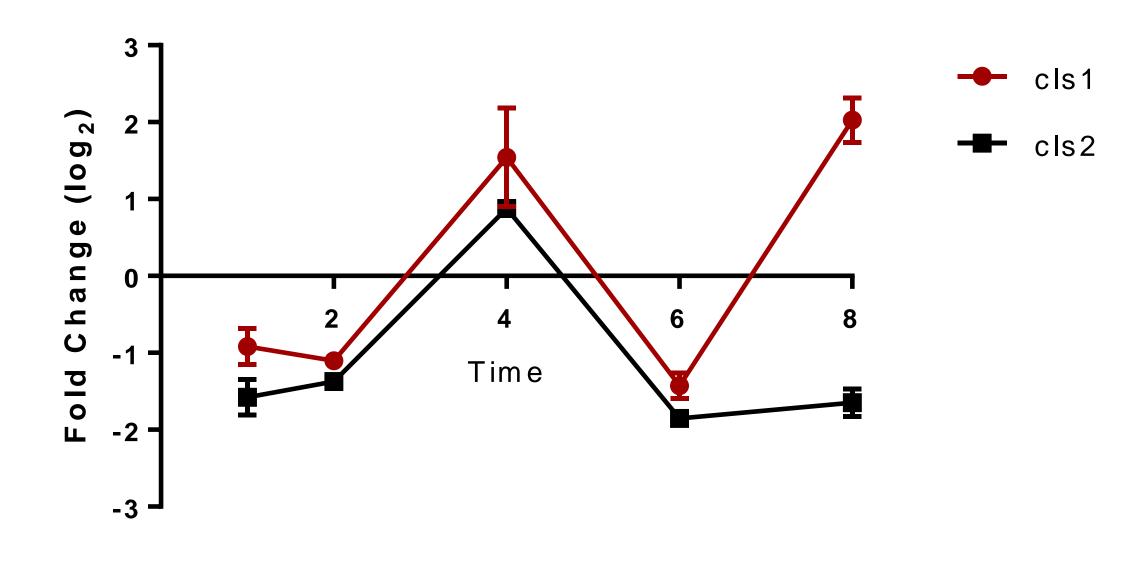


Membrane Adaptation DAP Resistance

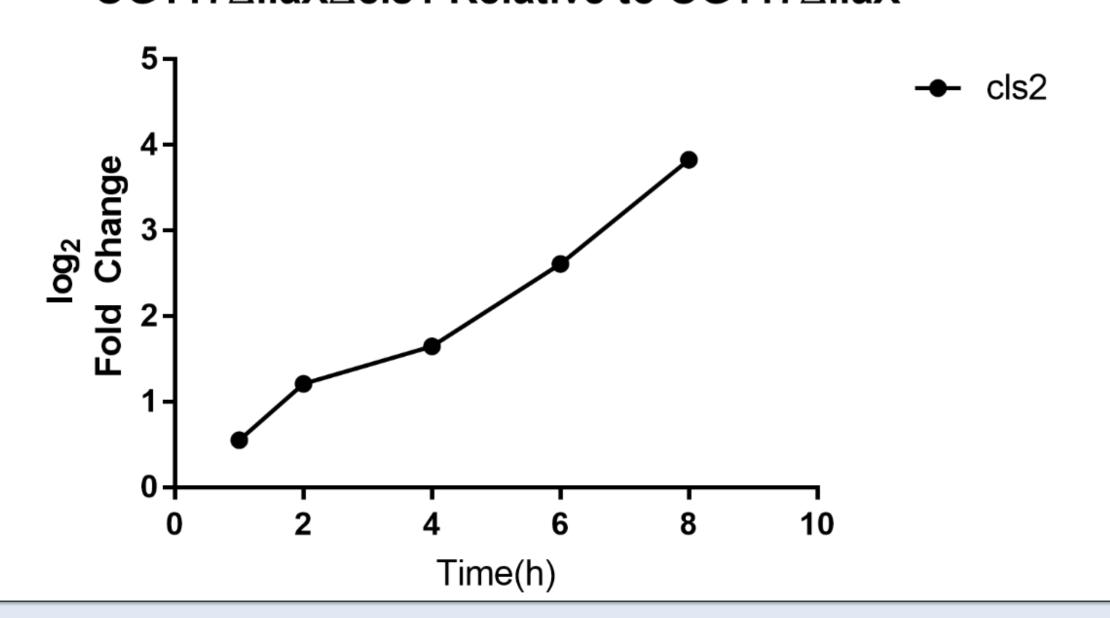
Methods

- Mutant Generation: Complete deletion mutants of cls1, cls2, or both were generated in E. faecalis OG117 (DAP-susceptible) and E. faecalis OG117∆liaX (DAP-R) using the CRISPR-Cas9 system adapted for use in *E. faecalis*⁴.
- **DAP Minimum Inhibitory Concentration**: Strains were diluted to a concentration of approximately 1x108 CFU/mL and plated on Mueller Hinton agar. A DAP E-test (bioMerieux) strip was placed onto the plate and incubated for 24 hours at 37C prior to evaluation.
- APL Microdomain Localization: NAO is a hydrophobic fluorescent dye that specifically binds APLs in the membrane⁶. Strains were grown in tryptic soy broth with 1uM of NAO to exponential phase prior to visualization (Keyence BZ-X710).
- cls Gene Expression: Strains were grown from t=1h to 8h in tryptic soy broth, and RNA was extracted (PureLink RNA Extraction Kit, Invitrogen). All RNA samples were treated with DNase (TurboDNAse, Ambion) prior to cDNA synthesis (SuperScript II, Invitrogen). qRT-PCR was used to evaluate differences in gene expression using the Pfaffl method, relative to 16S rRNA expression.

Mechanistic Model


Deletion of *cls* restores septal APL microdomain localization

Results


<i>Efs</i> OG117∆ <i>liaX</i>	DAP MIC (µg/mL)	NAO Staining
Wild-type	8	Redist.
∆cls1	6-8	Redist.
∆cls2	8	Redist.
$\Delta cls 1 \Delta cls 2$	4-6	Septal

cls1 and cls2 are differentially expressed in DAP-R

OG117 Liax Relative to OG117

OG117∆liaX∆cls1 Relative to OG117∆liaX

References

Conclusions

- DAP-R is associated with increased expression of *cls1*, especially in stationary phase
- However, deletion of *cls1* alone does not prevent re-distribution of anionic phospholipid microdomains
- Cls2 may have role in DAP-R secondary to Cls1, as qRT-PCR shows increased expression of *cls2* when *cls1* is deleted
- Deletion of both genes restores septal APL microdomain localization

Funding

NIH R01 to CAA NIH T32, IDSA, ASM to AHN

- Tran, T. T. et al. Daptomycin-resistant Enterococcus faecalis diverts the antibiotic molecule from the division septum and remodels cell membrane phospholipids. MBio **4,** 1–10 (2013).
- 2. Arias, C. A. et al. Genetic Basis for In Vivo Daptomycin Resistance in Enterococci. N. Engl. J. Med. 365, 892–900 (2011).
- Miller, C. et al. Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance. *Antimicrobial Agents and Chemotherapy* **57,** 5373–5383 (2013).
- Hullahalli, K., Rodrigues, M., Nguyen, U. & Palmer, K. A semi-lethal CRISPR-Cas system permits DNA acquisition in Enterococcus faecalis. bioRxiv 9, 232322 (2017).
- 5. Müller, A. et al. Daptomycin inhibits cell envelope synthesis by interfering with fluid membrane microdomains. Proc. Natl. Acad. Sci. 113, E7077–E7086 (2016).
- 6. Mileykovskaya, E. & Dowhan, W. Visualization of Phospholipid Domains in Escherichia coli by Using the Cardiolipin-Specific Fluorescent Dye 10- N -Nonyl Acridine Orange. J Bacteriol **182,** 1172–1175 (2000).
- Kawai, F. et al. Cardiolipin Domains in Bacillus subtilus Marburg Membranes. Society **186,** 1475–1483 (2004).