

Background

- Methicillin-susceptible *Staphylococcus aureus* (MSSA) bacteremia is a significant cause of mortality¹
- Recent studies have demonstrated that cefazolin may be non-inferior to the anti-staphylococcal penicillins (ASPs), oxacillin and nafcillin, in the treatment of MSSA, but cefazolin has a broader spectrum of activity²
- Four studies to date have evaluated the use of penicillin for penicillin-susceptible *Staphylococcus aureus* (PSSA)³⁻⁶

Purpose

• To evaluate the safety and efficacy of penicillin vs cefazolin or anti-staphylococcal penicillins in the treatment of PSSA bacteremia

• Pearson chi-squared and Kaplan-Meier survival were used to compare the primary outcome between interventions

BRIGHAM Penicillin Versus Cefazolin or Anti-staphylococcal Penicillins for Penicillin-Susceptible HARVARD Staphylococcus aureus Bacteremia MEDICAI Mohammed Aldhaeefi¹, Jeffrey C. Pearson^{1,2}, Sanjat Kanjilal², Brandon Dionne^{1,3} SCHOOL ¹Department of Pharmacy Services, ²Department of Infectious Diseases, Brigham and Women's Hospital, Boston, MA TEACHING AFFILIATE

³Department of Pharmacy and Health Systems Sciences, Northeastern University, Boston, MA

			Res	sults
Baseline Characteristics	Penicillin (n=49)	Cefazolin (n=26)	ASPs (n=26)	1.0 O
Age, median (IQR), years	60 (43-70.5)	59.5 (49.5-68.5)	59.5 (35.5-71)	ailur
Male	31 (63.2)	13 (50)	18 (69.2)	8.0 <u>g</u>
Hardware	19 (38.7)	9 (34.6)	12 (46.1)	Clinic
Intravenous line	12 (24.4)	9 (34.6)	4 (15.3)	lay (
Dialysis	2 (4)	3 (11.5)	1 (3.8)	P 0.6
Persons who inject drugs	7 (14.2)	10 (38.5)	6 (23)	with
Pitt bacteremia score, median (IQR)	1 (0-4)	1 (0-4)	2 (0-3.25)	atients v
Charlson comorbidity score, median (IQR)	3 (2-6)	6 (3.75-7.25)	5 (3-9)	rtion of F
ICU admission within 72 hours of positive blood culture	11 (22.4)	9 (34.6)	6 (23)	Propo
Source of bacteremia: Skin & soft tissue infection Central line Injection drug use Dentition	14 (28.5) 6 (12.2) 1 (2) 0	7 (26.9) 6 (23.1) 0 12 (50)	6 (26) 3 (11.5) 0 1 (3.8)	Fig
Secondary infections: Endocarditis Osteomyelitis Other None	28 (57.1) 6 (12.2) 1 (2) 7 (14.2) 35 (71.4)	1 (3.8) 1 (3.8) 0 24 (92.3)	5 (19.2) 4 (15.3) 1 (3.8) 16 (61.5)	Leng mean Durat days, Treat mean

*Data presented as n (%) unless otherwise indicated

Primary Outcome	Penicillin	Cefazolin	ASPs	
	(n=49)	(n=26)	(n=26)	9
60-day clinical failure	14 (28.6)	5 (19.2) (p=0.376 vs penicillin)	14 (53.8) (p=0.031 vs penicillin)	
Change in antimicrobial	11 (22.4)	4 (15.3)	11 (42.3)	Α
Recurrence of bacteremia	2 (4)	0 (0)	1 (3.8)	A
Infection-related readmission	2 (4)	1 (3.8)	3 (11.5)	R: H
All-cause mortality	1 (2)	0 (0)	3 (11.5)	H
Data presented as $p(0/)$				

Data presented as n (%)

30-day: **0-day:**

ash Other

*Data presented as n (%) unless otherwise indicated

Discussion

• The higher rate of 60-day clinical failure with ASPs in comparison to penicillin was driven primarily by changes in antibiotic regimen

• A non-significant higher mortality rate was observed among PSSA bacteremia patients who were treated with ASPs in comparison to penicillin, while cefazolin had a similar mortality rate to penicillin

Discontinuation due to an adverse event was higher with nafcillin/oxacillin (23%) in comparison to penicillin (18.3%) and cefazolin (7.6%)

Patients treated with anti-staphylococcal penicillins had numerically more secondary infections in comparison to patients treated with penicillin and cefazolin

Limitations

 Retrospective analysis which cannot control for potential treatment biases (confounding by indication)

• Nafcillin and oxacillin groups were combined as only three patients were treated with oxacillin

• Results can only be generalized to institutions that perform penicillin susceptibility testing

Conclusion

Penicillin is safe and effective for the treatment of PSSA bacteremia in comparison to cefazolin and may be preferable to anti-staphylococcal penicillins

Disclosure

The authors have nothing to disclose

References

Hanses F et al. *Infection*. 2010;38(6):465-470 Li J et al. *Pharmacotherapy*. 2017;37(3):346-360 Shah MD et al. Pharmacotherapy. 2018;38(7):769-775 Henderson A et al. Int J Antimicrob Agents. 2019;54(4):491-495 Moriyama Y et al. J Infect Chemother. 2020;26(4):358-362 6. Lindbjerg Nissen J et al. *J Antimicrob Chemother*. 2013;68(8):1894-1900