Comparison of Cefazolin Susceptibilities of *Enterobacterales* with an Automated Susceptibility Testing Platform versus In Vitro Antimicrobial Testing

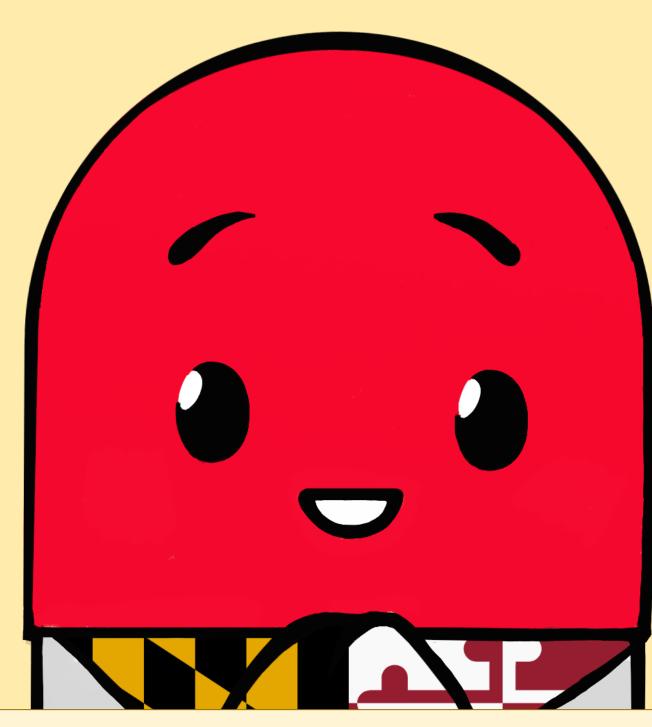
UNIVERSITY of MARYLAND

Mandee Noval, PharmD¹, Emily Heil, PharmD, BCIDP, BCPS-AQ ID¹, Paula Williams, MLS(ASCP)CM², J. Kristie Johnson, PhD², Kimberly Claeys, PharmD, BCPS¹

[1] Department of Pharmacy, University of Maryland School of Pharmacy, Baltimore, Maryland, USA; [2] Department of Pathology, University of Maryland School of Medicine, Baltimore, Maryland, USA

Address correspondence to: mandee.noval@umm.edu

BACKGROUND


- In 2011, Clinical and Laboratory Standards Institute (CLSI) revised susceptibility testing breakpoints for the use of parenteral cephalosporins for *Enterobacterales* infections
- This modification was based on data suggesting increased treatment failure secondary to low-level resistance mechanisms not detected by previous breakpoints (MIC \leq 8)
- Updated breakpoints may be difficult to implement as many automated susceptibility testing (AST) platforms are limited by the minimum antimicrobial concentration present
 - Vitek®2 (bioMerieux, Durham NC) lowest reportable cefazolin (CFZ) MIC of 4 μg/mL

	<u>UMMC Reported</u> <u>Breakpoints for CFZ</u>	CLSI Revised Breakpoints for CFZ*
Susceptible	<u><</u> 4	<u><</u> 2
Intermediate	16	4
Resistant	32	<u>></u> 8

- * = breakpoints for non-urinary sites
- Current reporting methods may encourage the use of CFZ when isolates may be resistant
- Limited data exists on the impact CFZ use on clinical outcomes in this population

STUDY DESIGN & METHODS

- Retrospective single-center study at University of Maryland Medical Center (UMMC)
- Adult patients with positive blood cultures for CFZ-susceptible Enterobacterales from 1/2016 to 9/2018
- <u>Primary outcome</u>: rates of CFZ susceptibility for *Enterobacterales* with AST (Vitek®2) vs. manual methods with lower dilutional concentrations
 - Vitek®2 performed at initial admission; version 8.01 and AST-GN74 card
 - MIC Gradient Test Strips (Liofilchem, Waltham, MA) and disk diffusion (BD-BBL, Franklin Lakes, NJ) performed retrospectively on frozen isolates stored at -80°C
- <u>Secondary outcomes</u>: clinical outcomes of patients with *Enterobacterales* bloodstream infections (BSI) who received CFZ vs. alternate therapies
 - Treatment failure: composite of 30-day all-cause inpatient mortality, 30-day recurrent BSI, 60-day recurrent infection with, or infectious complications
 - Infectious complications: local/suppurative complication not present at infection onset or distant complication defined as growth of same initial bacteria
- Statistical analysis:
 - Bivariate analysis used for comparisons including X² or Fisher's Exact (FE) Test for nominal variables; Student t-test or Mann Whitney U test for continuous variables
 - Binary logistic regression was used to find independent predictors of clinical failure
 - Variables included were significant on bivariate analysis (p <0.05) or determined to be clinically relevant a priori

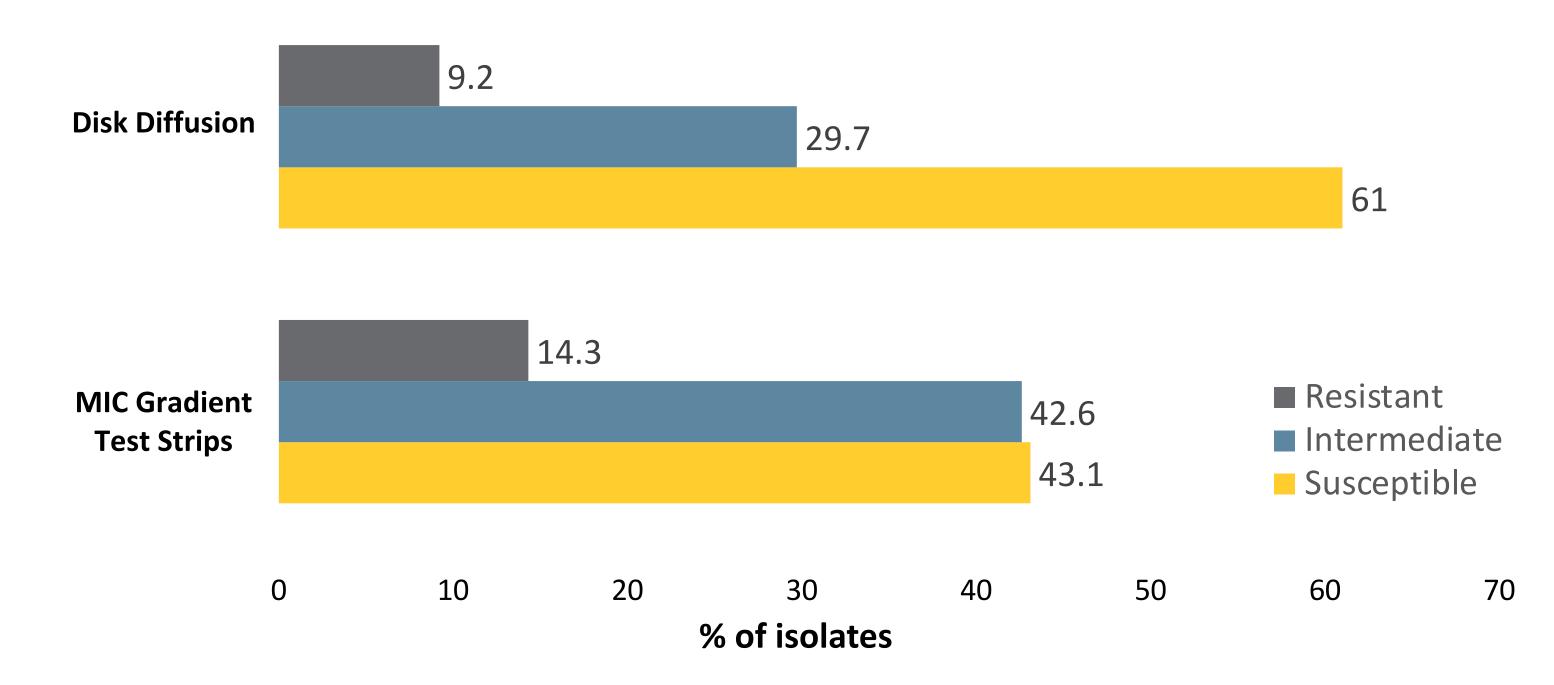
Take-home Points:

AST-reported CFZ susceptibility should be confirmed with additional testing prior to definitive use of CFZ for systemic *Enterobacterales* infections, particularly in patients without source control or ID consult.

CFZ

Non-CFZ

P-value


Results: Baseline Demographics and Clinical Characteristics

Characteristics

All Patients

Characteristics	(n=238)	(n=33)	(n=205)	r-value	
Age (years), mean ± SD	57 ± 15	54 ± 16	57 ± 16	<0.001	
Male, n (%)	137 (57.6)	29 (87.9)	108 (52.7)	< 0.001	
CCI, median (IQR)	2 (1, 4)	2 (1, 4)	2 (1, 4)	0.42	
BSI in ICU, n (%)	77 (32.3)	11 (33.3)	66 (32.2)	0.89	
Organism, n (%)					
Escherichia coli	141 (59.2)	13 (39.4)	128 (62.4)	0.04	
Klebsiella spp.	97 (40.8)	20 (60.6)	77 (37.6)		
Source of BSI, n (%)					
Urinary	94 (39.5)	9 (27.3)	85 (41.5)		
Intra-abdominal	60 (25.2)	6 (18.2)	54 (26.3)		
Endovascular	18 (7.6)	6 (18.2)	12 (5.9)	0.04	
Skin and soft tissue	15 (6.3)	3 (9.1)	12 (6.9)	0.04	
Respiratory	6 (2.5)	2 (6.1)	4 (2)		
Bone/joint	2 (0.8)	1 (3)	1 (0.5)		
Unknown	43 (18.1)	6 (18.2)	37 (18.1)		
ID Consult	151 (63.4)	27 (81.8)	124 (60.5)	0.02	
Source Control					
Yes	170 (71.4)	25 (75.8)	145 (70.7)	0.35	
No/Unknown	68 (28.6)	8 (24.2)	60 (29.3)		
First Definitive Antibiotic, n (%)	<u> </u>		-		
Ampicillin-sulbactam	8 (3.4)	0 (0)	8 (3.9)		
Cefazolin	26 (10.9)	26 (78.8)	0 (0)		
Ceftriaxone	122 (51.3)	5 (15.2)	117 (57.1)		
Cefepime	19 (8)	1 (3)	18 (8.8)	< 0.001	
Meropenem	12 (5)	0 (0)	12 (5.9)		
Piperacillin-tazobactam	24 (10.1)	0 (0)	24 (11.7)		
Quinolones	21 (8.8)	1 (3)	20 (9.8)		
Other	5 (2.1)	0 (0)	5 (2.4)		

CFZ Susceptibility Results by Testing Method in Vitek®2 Susceptible Organisms

*8 isolates with Vitek®2 CFZ MIC of 8 reported as susceptible in EMR

- 195 microbiologically evaluable (ME):
 - Disk diffusion: 39% of isolates reported as non-susceptible
 - MIC Gradient Test Strip: 56.9% of isolates reported as non-susceptible
- 238 patients → 33 received cefazolin → 24 ME
 - Non-susceptibility of 57.6% to 66.6% by disk or MIC Gradient Test Strip, respectively

Clinical Outcomes, CFZ versus non-CFZ-treated Patients

Outcomes, n (%)	Overall (n=238)	CFZ (n=33)	Non-CFZ (n=205)	<i>P</i> -value
Treatment failure*	90 (37.8)	11 (33.3)	79 (38.5)	0.57
30-day mortality	28 (11.8)	2 (6.1)	26 (12.7)	0.42 (Yates)
Recurrent BSI	5 (2.1)	0 (0)	5 (2.4)	NA
Distant complications	26 (10.9)	3 (9.1)	23 (11.2)	0.95 (FE)
30-day readmissions	25 (10.5)	3 (9.1)	22 (10.7)	1 (FE)
30-day <i>C. difficile</i> infections	12 (5)	0 (0)	12 (5.6)	NA
60-day recurrent organism	27 (11.3)	4 (12.1)	23 (11.2)	0.88

Logistic Regression Model Independent Predictors of Clinical Failure

Variable	Unadjusted OR (95% CI)	<i>P</i> -value	Adjusted OR (95% CI)
ICU at BSI	2.32 (1.17, 4.62)	<0.001	1.54 (0.59, 3.55)
Urinary source	0.55 (0.28, 1.07)	0.08	
E. coli	1.54 (0.77, 3.06)	0.22	
ID consult	0.34 (0.17, 0.71)	0.004	0.37 (0.15, 0.89)
Source Control	0.07 (0.01, 0.31)	<0.001	0.06 (0.13, 0.32)
CFZ Resistant (MIC Gradient Test Strips)	0.78 (0.4, 1.58)	0.51	1.01 (0.38, 2.7)

References:

Turnidge JD et al. *Clin Infect Dis.* 2017;52:917–24; Paterson DL et al. *J Clin Microbiol*. 2011;39:7; Humphries RM et al. *J Clin Microbiol*. 2019;57:e00203-19.