

Immune responses in mild and severe COVID-19

- NewYork-Presbyterian Weill Cornell Medical Center

Mirella Salvatore^{1*}, Charles Vorkas¹, Harjot Singh¹, Ajana Morales¹, Rosemary Soave¹, Shashi Kapadia¹, Grant Ellsworth¹, Kohta Saito¹, Christopher Brown¹, Jingmei Hsu¹, Joseph Casano¹, Giorgio Inghirami² ¹Department of Medicine: and ²Department of Pathology and ²Laboratory Medicine: Weill Cornell Medicine. New York, NY, USA: *mis2053@med.cornell.edu

Methods

We conducted an observational of 45 COVID-19 patients treated at Weill Cornell Medicine (IRB 20-03021645) between April 2020. The disease was and July categorized as "mild" if the patient was not admitted or required <6 L non-invasive supplemental oxygen to maintain SpO2 >92% (n = 21). Patients with "severe" required hospitalization disease and received >6 L /high flow supplemental oxygen or mechanical ventilation (n = 15) Samples were also collected from nonhospitalized individuals who had recovered from mild COVID-19 ("convalescent" group, n = 9) and from healthy COVID-19 negative donors (n = 12) Longitudinal sampling at enrollment and every 7 days thereafter was performed in eight patients. making a complete dataset including 102 samples from 57 individuals.

We performed high-dimensional immune cell profiling of circulating blood by flow cytometry based on seven independent fluorochrome-conjugated antibody panels, each targeting a specific surface protein marker of T, B, NK, and myeloid-derived suppressor cells (MDSCs).

- Coronavirus disease-2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a global pandemic that has affected over 25 million people worldwide.
- Clarifying the early immunological alterations associated with mild versus severe COVID-19 may offer therapeutically actionable targets and enable the identification of cases at highest risk for clinical deterioration and death.

% Lymphocyte

SARS-CoV-2 induces expansion of PMN MDSCs and biases NK KIR usage

a) Abundance of myeloid derived suppressor cells (MDSCs) as a percentage of all immune cells correlates with disease severity. b) Natural Killer (NK) cell Killer Immunoglobulin-like Receptor (KIR) receptor expression correlates with disease severity.

Conclusion

We observed that SARS-CoV-2 is associated with broad dysregulation of the circulating immune system, characterized by the relative loss of lymphoid cells coupled to expansion of myeloid cells. Severe cases demonstrated expansion of CD158i+ (KIR2DS4) NK cells and MDSCs, suggesting that the innate immune compartment may contribute to COVID-19-induced immune dysregulation.

Full Data

For full data: medRxiv 2020.09.08.20189092: doi: https://doi.org/10.1101/2020.09.08.20189092

B-cell

NK-cell

Myeloid-derived

SARS-CoV-2 infection causes imbalances in the naive and memory T cell compartments and induces exhaustion

No Intubation

Intubation

Alive -

Dead -

Dead -

CD45, CD20, CD19, CD27, CD25, CD10, IgG, IgM, CD5

CD45, CD3, CD56, CD16, CD158a, CD158b, CD1583, CD158i, CD159a

a) The ratio of CD4⁺ to CD8⁺ T cells is dependent on disease state and clinical intervention.

false

adjusted p-value <0.01: *. FDR-

adjusted p-value of 0.01-0.05.

b) The abundance of naive (CD45RA⁺) and memory (CD45RO⁺) CD4⁺ or CD8⁺ T cells is dependent on disease state or clinical intervention.

c) T cell exhaustion markers correlated with disease severity.