BIOCHEMICAL CHARACTERIZATION OF L1 AND L2 B-LACTAMASES FROM CLINICAL ISOLATES OF STENOTROPHOMONAS MALTOPHILIA
${ }^{1}$ CWRU; ${ }^{2}$ Cleveland VAMC; ${ }^{3}$ Universidad El Bosque, Colombia; ${ }^{4}$ University Of Bristol, UK; ${ }^{5}$ IBR-CONICET, Argentina

BACKGROUND
Stenotrophomonas maltophiira is an aerobic, non-ermentative, trans-kingdom Gram-negative pathogen [1], classified by the WHO as a leading nosocomial, multidrug resistant organism [2]
Intrinsic β-lactam resistance due to the expression of two inducible β-lactamases
L1 a class B3 Metallo- β-lactamas
L2 a class A, clavulanate-susceptible cephalosporinase
OBSERVATIONS

Analysis of the deduced amino acid sequences obtained from 116 clinica strains ide 12 , that group incal different clades [3]

Analysis of the deduced amino acid sequences obtained from 73 clinica rariants of 11 , that group incol different clades [3]

RESEARCH Are there biochemical differences among the variants? Is this L1 RESEARCH
QUESTIONS
and L 2 sequence diversity reflected in different hydrolytic profiles?

RESEARCH DESIGN

1. Representative sequences of each clade ($\mathbf{L 2 B}$ and $\mathbf{L 2 D}$) were cloned. Differences in the Ω-loop are indicated
2. L2B and L2D expressed in E. coli DH10B confer ESBL and inhibitor resistant phenotypes (Table 1)

Table 1. MICs of E. coli pBCSK producing L2B and L2D

	AMP	PIP	ATM	CAZ	CTX	CRO	FEP	тוм	SAM	TZP	CZ	IPM
pBCSK+	8	4	0.25	0.5	0.125	0.125	0.125	4	4	2	0.25	0.5
L2B pBCSK	4096	512	2048	128	32	32	2	256	64	512	0.5	0.5
L2D pBCSK	4096	512	512	8	8	16	2	128	128	256	0.25	0.5
R Breakpoint	≥ 32	≥ 128	≥ 16	216	≥ 4	≥ 4	216	$\geq 128 / 2$	232/16	$2128 / 4$	≥ 1	≥ 4
AMP, ampicillin; PIP, piperacillin; ATM, aztreonam; CAZ, ceftazidime; CTX, cefotaxime; CRO, ceftriaxone; FEP, cefepime; TIM, ticarcillin-clavulanate; CZA, ceftazidime-avibactam; IPM, imipenem												
3. In line with the cell-based assays, kinetic assays confirmed that L2B displays higher catalytic efficiencies than						4. Figure 1. A) L2B and L2D CD spectra. B) Melting point differences indicate that L2D is less stable than L2B						

Table 2. Kinetic parameters of L2B and L2D

Substrate	L2	\mathbf{K}_{M}	$\begin{array}{c}\boldsymbol{k}_{\text {cat }} \\ \left(\mathbf{s}^{1}\right)\end{array}$	$\begin{array}{c}\boldsymbol{k}_{\text {col }} / \boldsymbol{K}_{\boldsymbol{M}} \\ \left(\mu \mathrm{M}^{-1} \mathrm{~s}^{-1}\right)\end{array}$
Cefotaxime	B	9.4	0.8	2

$\begin{array}{ccccc} & \text { D } & \text { Certaxime } \\ & \text { Ceftazidime } & \text { B } & - & - \\ \text { B } & - & 1^{*} \\ & 0.06^{*}\end{array}$

$\begin{array}{llllll} & \text { Nitrocefin } & \text { B } & - & - & 0.01 \times \\ & \text { B } & 1055 & 12.4 \\ & & & & \\ & \text { D } & 78 & 730 & 9.4\end{array}$

$\begin{array}{ccccc} & \text { D } & 78 & 730 & 9.4^{\prime} \\ & \text { Imipenem } & \text { B } & - & - \\ & \text { D } & 0.000^{*} \\ & & & & 0.0004^{*}\end{array}$

* Calculated from the progress curves of reaction. Values reported are averages of tripiciate experiments. Eroros were

reported are a
less than 10%
spectra. B) Melting point differences dicate that L2D is less stable than L2B $\left(46 \pm 1^{\circ} \mathrm{C}\right.$ vs. $52 \pm 1^{\circ} \mathrm{C}$, respectively).

5. As shown in Figure 2, an overlay of synonymous and non-synonymous substitutions are distributed throughout the structure
Substitutions at the active site loops (shown in sticks) are predicted to affect substrate binding, reducing the affinity for certain substrates
6. Sequences of previously characterized L1 variants (L1 AE; [4]) representative of each clade were cloned. L1 variants expressed in E. coli DH10B confer similar resistance towards carbapenems. LTE is weaker a cephalosporins (Table 3).

Notably, L1E performs worse than any other variant under low Zn (II) availability (Figure 3).

Table 3. MICs of E. coli pBCSK producing L1 variants

	PIP	CAZ	CTX	FEP	IPM	MEM
pBCSK	4	0.5	0.125	0.06	0.5	≤ 0.125
L1a	2048	512	64	4	32	32
L1b	2048	512	64	4	16	16
L1c	2048	512	128	4	16	16
L1d	1024	512	64	4	8	16
L1e	1024	16	16	0.5	32	32

PIP, piperacilinin; CAZ, ceflazidime; CTX, cefotaxime; FEP, cefepime;

Figure 3. L1 variants display differen olerances to Zn (II) starvation mipenem MICs of E coli DH10B cells expressing L1 variants in MH agar supplemented with the indicated concentrations of DPA relative to the MIC in $0 \mu \mathrm{M}$ DPA. Data shown is the mean of biological replicates standard error. VIM-2 is shown as a reference
CONCLUSIONS
Representative clinical variants of L2 confer ESBL and inhibitor resistant phenotypes, except to avibactam

- Carbapenemase activity is conserved among L1 variants, and they display different tolerane remains to be determined

