

CASE WESTERN RESERVE

Daniel Li, BS¹; Heba Alhmidi, MD¹; Jacob G. Scott, MD, DPhil^{2,3}; Ian Charnas, BS⁴; Basya Pearlmutter, BS¹; Jennifer L. Cadnum, BS¹; Brigid Wilson, PhD⁵; Curtis J. Donskey, MD^{3,5}

¹Research Service, Louis Stokes Cleveland VA Medical Center, Cleveland, OH; ²Cleveland, OH; ³Case Western Reserve University School of Medicine, Cleveland, OH; ⁴Case Western Reserve University School of Engineering and Sears think[box], Cleveland, OH; ⁵Geriatric Research, Education and Clinical Center, Louis Stokes Cleveland VA Medical Center, Cleveland, OH

Introduction

- During the COVID-19 pandemic, shortages of personal protective equipment (PPE) have forced many healthcare facilities to require personnel to reuse N95 respirators
- We hypothesized that the use of improved technique such as changing gloves after N95 contact or providing rapid decontamination between each use would reduce the risk for contamination

Methods

- Twelve healthcare personnel each performed 4 standardized simulations of patient care interactions in a randomized order
- N95 respirators exteriors were contaminated with bacteriophage MS2 with sampling recovery of ~10⁶ plaqueforming units (PFU)
- Simulations involved:
 - Donning a N95 respirator (3M 8210) contaminated with bacteriophage MS2 and additional PPE (gloves, cover gown, face shield)
 - Maneuvering the patient's table and bedrail and auscultating the chest and palpating the abdomen
 - Doffing PPE after examination and placing N95 respirator into paper bag for storage
- Four simulation protocols were used:
 - 1. Control: Simulation without glove change except at completion of doffing after the examination
 - 2. Change gloves: Glove change after any N95 contact
 - **3.** UV: Control + 1 minute UV-C light treatment of respirator prior to donning
 - **4. Steam**: Control + 30 second steam treatment of respirator prior to donning
- A second trial was conducted with simulation protocols 1-3 using a 100-fold lower bacteriophage MS2 inoculum
- Participant and environmental surfaces were sampled after each simulation and frequencies of contamination were compared.

Contact

Daniel Li Northeast Ohio Veterans Affairs Healthcare System Email: Daniel.Li3@va.gov

A Randomized Crossover Study to Evaluate Interventions to Reduce Contamination during **Reuse of N95 Respirators**

Results

• Use of a highly contaminated N95 respirator resulted in frequent MS2 contamination in the Control, Glove change, and UV-C groups, but was dramatically reduced with steam treatment of the N95 (P<0.01) (Figure 1A)

• With the lower level of contamination, MS2 contamination occurred less frequently across all groups, and was significantly reduced in the UV group, compared to the Control (P<0.01) (Figure 1B)

• Common observed routes of contamination included: • Direct transfer from contaminated portion of N95 respirator to skin, face shield, and stethoscope • Direct transfer to paper bag holding N95 respirator

Figure 2. Photos showing fluorescent lotion transferred from the external facepiece of an N95 respirator to various sites

Conclusions

• Reuse of contaminated N95 respirators resulted in contamination of personnel and the environment even when correct technique was used

• Rapid decontamination technologies can reduce the risk for

Acknowledgements

We thank the healthcare and environmental management services personnel who participated in the study. We thank the CWRU School of Engineering and Sears think[box] for support with the UV-C device design.