Carbapenem-Resistant Enterobacteriaceae

- **Results Continued** • 438 CRE were reported between June 2018-February 2020 and globally (n=351). • 351 (80.1%) had genetic mechanism testing performed Genus and S susceptible *Enterobacteriaceae*^{1,2} Klebsiella pr and were included in our Enterobacte analysis. 2018 E. coli • Doripenem resistance was not other Enterd analyzed as few isolates were transmissible plasmids Carbapener tested for it **CP-CRE** • For other carbapenems with prevention and control measures are important in preventing transmission **Genetic Med** each increase in MIC dilution the KPC odds of an organism being CPidentify CP genetic mechanisms, are needed to differentiate CP-CRE from non-CP-CRE NDM CRE increased. OXA 48 ROC analysis revealed that meropenem and imipenem Philadelphia isolates that would allow the use of a predictive model to effectively Carbapener performed well in distinguishing Ertapenem differentiates CP and non-CP-CRE non-CP-CRE and CP-CRE (AUC Meropener Imipenem 0.82 and 0.79 respectively) and laboratories Doripenem ertapenem performed poorly as a predictor (AUC 0.61)

- Background • Carbapenem-resistant *Enterobacteriaceae* (CRE) are a growing threat in the United States • CRE infections are associated with higher mortality rates than infections due to carbapenem-• CRE was made reportable to the Philadelphia Department of Public Health (PDPH) in April of • Some carbapenem resistance genes encode for carbapenemase enzymes located on highly • Early detection of carbapenemase-producing CRE (CP-CRE) and aggressive infection • Phenotypic laboratory tests to detect carbapenemase production or genotypic tests to **Our Project** • The goal of our analysis was to determine if there are patterns of CRE resistance in • Another goal of the project was to better understand testing capabilities of Philadelphia • An MIC cutoff value between non-CP-CRE and CP-CRE could be useful to clinicians in
- situation where tests for carbapenemase production are not available
- In this analysis sensitivity in detecting CP-CRE would be more important than specificity since it would be more important to capture all CP-CRE than it would be to correctly classify non-CP-CRE

Methods

- Resistance and carbapenemase profiles of CRE reported to PDPH between June 2018, when reporting and testing for carbapenemase became more complete, and February 2020 were analyzed
- Local clinical laboratory testing capability was assessed through reporting and phone interviews
- Overall association between increased resistance levels and carbapenemase genes was calculated
- Receiver Operating Characteristic (ROC) curves were plotted and the area under the curve (AUC) were calculated
- Sensitivity, specificity, positive predictive values (PPV), and negative predictive values (NPV) were calculated for each possible MIC cutoff value
- MIC cutoff values were evaluated for their level of use to differentiate non-CP-CRE and CP-CRE
- All data cleaning and analysis were performed in SAS 9.4 software

Results

• Of the 13 clinical microbiology laboratories in Philadelphia, only 5 (38%) conduct phenotypic tests and only 3 (23%) conduct genotypic testing

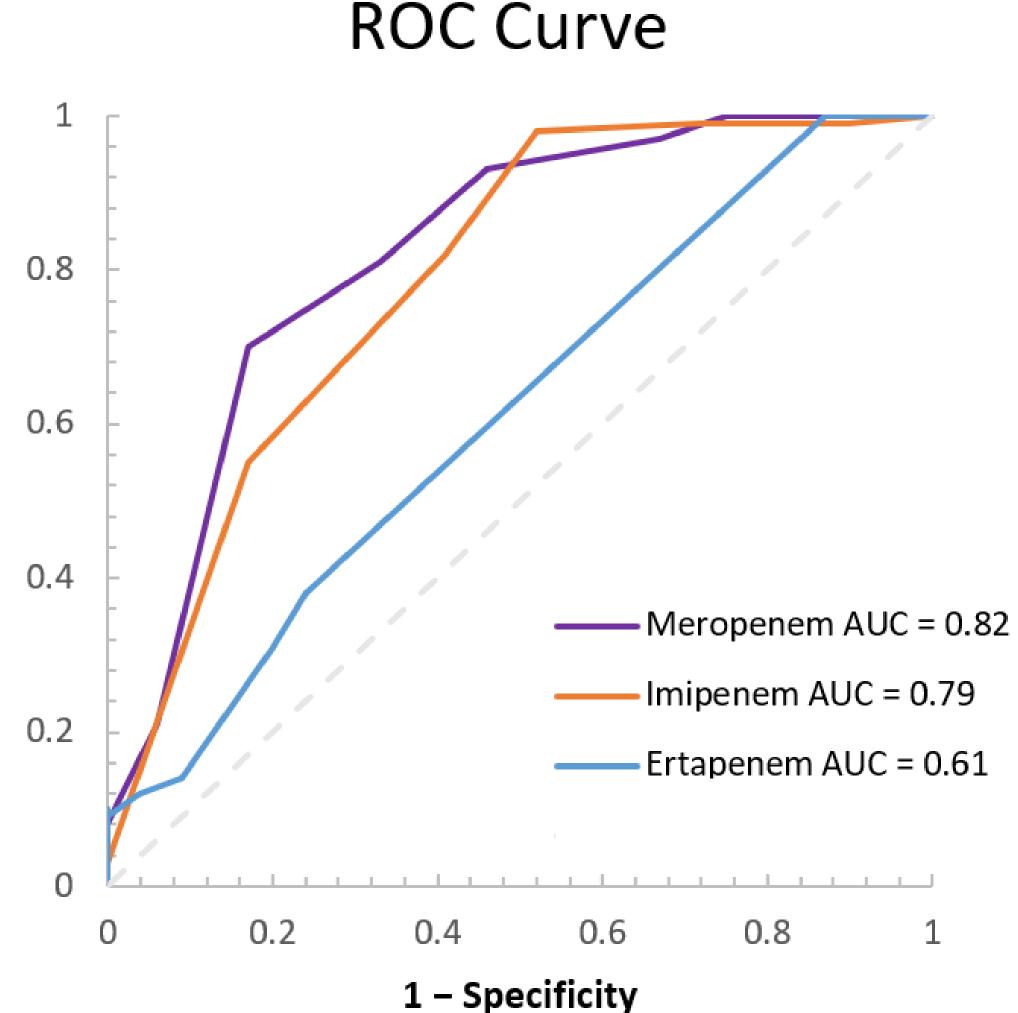
> Table 1. Current CP testing capabilities of 14 clinical laboratories in Philadelphia 101)

	n (%)	
Detection Method		
mCIM or other phenotypic testing	5 (38%)	
PCR or other genotypic testing	3 (23%)	

• Once a CRE report is received, PDPH requests laboratories that do not conduct phenotypic or genotypic CP testing to submit isolates to the Pennsylvania Bureau of Laboratories (PA BOL) for mechanism testing

Using Carbapenem Resistance Levels to Discriminate Between **Carbapenemase Producing and Non-Carbapenemase Producing**

William Koehne MPH^{1,2}; Tiina Peritz MS, BSN, RN, CIC¹; Kristin Privette, MPH¹; Jane M. Gould MD¹


• Table 4 shows characteristics of each cutoff value with MICs equal to below the cutoff being classified as non-CP-CRE, and those above the cutoff being classified as CP-CRE.

Sensitivity

Laboratory Hospital Lab

standard dilution increase in MIC Carbapener Ertapenem Meropenem Imipenem

Figure 1. ROC Curve displaying the use of three carbapenem MIC levels to distinguish non-CP-CRE and CP-CRE

Author Contact Email: William.Koehne@Phila.gov and WilliamKoehnelll@gmail.com

¹Health Healthcare Associated Infections/Antimicrobial Resistance Program, Philadelphia, PA, USA; ²Council of State and Territorial Epidemiologists, Atlanta, GA, USA

Table 2. Characteristics of the CRE cases reported to PDPH that had genetic mechanism testing performed

(n=351).		
	n (%)	
Genus and Species		
Klebsiella pneumoniae	192 (54.7%)	
Enterobacter cloacae	53 (15.1%)	
E. coli	52 (14.8%)	
other Enterobacteriaceae	54 (15.4%)	
Carbapenemase Production		
CP-CRE	255 (72.6%)	
Genetic Mechanism		
KPC	220 (62.7%)	
NDM	22 (6.3%)	
OXA 48	2 (0.6%)	
Dual KPC and NDM	1 (0.3%)	
Carbapenems Tested		
Ertapenem	186 (53.0%)	
Meropenem	191 (54.4%)	
Imipenem	116 (33%)	
Doripenem	9 (2.6%)	
Laboratory Where CP Testing was Per	formed	
PA BOL or other Public Health Lab	251 (71.5%)	

Table 3. Odds ratios for organism being CP-CRE per one

100 (28.5%)

m	OR (95% CI)
	1.43 (1.11–1.83)
า	2.20 (1.72–2.81)
	2.52 (1.70–3.793)

Results Continued

MIC cutoff value

Meropenem				
MIC (µg/mL)	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)
0.5	97% (94-100)	33% (20-45)	79% (73-85)	81% (64-98)
1	94% (89-99)	54% (40-67)	84% (79-90)	76% (62-90)
2	81% (75-88)	67% (55-80)	87% (81-93)	57% (45-70)
4	70% (62-77)	83% (72-93)	92% (86-97)	51% (40-61)
8	21% (14-28)	94% (89-100)	91% (81-100)	31% (34-38)
	Imip	enem MIC cutoff to identify CP-	CRE	
MIC (µg/mL)	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)
0.5	99% (97-100)	28% (11-44)	80% (73-88)	89% (68-100)
1	98% (95-100)	48% (30-66)	85% (78-92)	88% (71-100)
2	82% (73-90)	59% (41-77)	86% (80-93)	52% (34-69)
4	55% (45-66)	83% (69-97)	91% (83-98)	38% (26-50)
8	3% (0-7)	100% (100-100)	100% (100-100)	26% (18-34)
	Ertap	enem MIC cutoff to identify CP	-CRE	
MIC (µg/mL)	Sensitivity (95% CI)	Specificity (95% CI)	PPV (95% CI)	NPV (95% CI)
0.5	100% (100-100)	13% (4-22)	74% (67-80)	100% (100-100)
1	38% (30-46)	76% (65-87)	79% (69-89)	33% (25-42)
2	31% (24-40)	80% (69-90)	79% (68-90)	32% (24-40)
4	14% (8-20)	91% (83-98)	79% (63-95)	30% (23-37)
8	12% (7-18)	96% (91-100)	89% (74-100)	31% (24-38)

Discussion

- Barriers to mechanism testing indicate MIC cutoff values may be useful to clinicians in cases when mechanism testing cannot be done
- Imipenem had the best performing MIC cutoff value of 1 μ g/mL where PPV is 85% (95% CI: 78-92) and NPV is 88% (95% CI: 71-100)
- Meropenem's best performing MIC cutoff value, also at 1 µg/mL, performed similarly with a PPV of 84% (95% CI: 79-90) and an NPV of 76% (95% CI: 62-90)
- Both cutoffs had high sensitivity, the $1 \mu g/mL$ imipenem MIC cutoff having a sensitivity of 98% (95% CI: 95-100) and the 1 μg/mL meropenem MIC cutoff having a slightly lower sensitivity of 94% (95% CI: 89-99)
- In contrast, all ertapenem cutoff points performed poorly, either having unacceptably low sensitivity or specificity
- MIC cutoff values of 1 μ g/mL for imipenem and 1 μ g/mL for meropenem could be useful in classifying CRE when additional testing is delayed or unavailable
- A similar analysis was conducted in 2016 using CRE detected at Johns Hopkins Hospital. They found good cutpoints for all carbapenems: 0.5 μg/mL for ertapenem and 2 μg/mL for both meropenem and imipenem. If they had valued sensitivity to a similar extent as we have, their findings for meropenem and imipenem may have been similar. Still, differences in their findings indicates heterogeneity by geographic location or over time⁵

Limitations and Next Steps

- Testing and reporting practices may have introduced selection bias: Even though reporting is mandatory, reporting of CRE was relatively incomplete near the beginning of PDPH's CRE surveillance and not all isolates are tested for carbapenemase
- CRE isolates are usually only tested for resistance to one or two carbapenems so the MIC values for the other carbapenems is unknown
- Findings may not be generalizable to other populations in different geographic areas
- Similar studies should be conducted in other jurisdictions that have made CRE reportable in order to inform their healthcare systems of whether antibiotic resistance levels can distinguish CP and non-CP-CRE.

Citations

1 Falagas, M. E., Tansarli, G. S., Karageorgopoulos, D. E., & Vardakas, K. Z. (2014). Deaths attributable to carbapenem-resistant Enterobacteriaceae infections. Emerging infectious diseases. 20(7). 1170–1175. 2 Woodworth KR, Walters MS, Weiner LM, et al. Vital Signs: Containment of Novel Multidrug-Resistant Organisms and Resistance Mechanisms — United States, 2006– 2017. MMWR Morb Mortal Wkly Rep 2018;67:396 org/10.15585/mmwr.mm6713e1external icon , Markogiannakis, A., Psichogiou, M., Tassios, P. T., & Daikos, G. L. (2012). Carbapenemases in Klebsiella pneumoniae and Other Enterobacteriaceae: An Evolving Crisis of Global Dimensions. *Clinical* Meagher RJ, Williams KP (2014) Resistance Determinants and Mobile Genetic Elements of an NDM-1-Encoding Klebsiella pneumoniae Strain. PLoS ONE 9(6): e99209.

Table 4. Meropenem, imipenem, and ertapenem sensitivity, specificity, PPV, and NPV at each

5 Tamma, P. D., Huang, Y., Opene, B. N., & Simner, P. J. (2016). Determining the Optimal Carbapenem MIC That Distinguishes Carbapenemase-Producing and Non- Carbapenemase-Producing Carbapenem-Resistant Enterobacteriaceae. Antimicrobial agents and chemotherapy, 60(10), 6425–6429. https://doi.org/10.1128/AA