Impact of Next Generation Sequencing (NGS) On The Treatment of Patients with Sarcoma

Background and Objectives

- **Background:**
 - NGS is increasingly being used for patients with Sarcoma
 - The role of NGS in the management of patients with Sarcoma remains undefined
 - Basket trials, and tissue agnostic therapies are increasingly prevalent and may be compelling options for patients in later lines of treatment

- **Objective:**
 - To review usage of NGS testing in patients with Sarcoma
 - To characterize the effect of NGS on management of patients with Sarcoma
 - Better quality instances in which NGS was utilized in order to understand incidence of mutations within a large population of Sarcoma patients

Methods

- Conducted through the Northwestern Medicine Oncoset Database
- Retrospectively analyzed all patients seen through the Northwestern Healthcare system with NGS, and a tissue diagnosis of Sarcoma
- Clinical course interpreted by investigators to assess impact on treatment and decision-making
- Mutations cross-referenced with ongoing tissue agnostic, and sarcoma specific trials

- **Key Eligibility Criteria**
 - Histologically confirmed diagnosis of Sarcoma
 - Performance of NGS assay:
 - Foundation Medicine
 - Tempus CDx
 - Guardant 360
 - Age > 16 years

Results

- A Total of 117 patients were analyzed with assays performed between 2014 and 2020
- **Patient Demographics and Clinical Characteristics**
 - **Characteristics**
 - **Frequency (%)**
 - Age- Median (Range): 55 (20-94)
 - Male: 57 (48%)
 - Female: 60 (52%)
 - Assays Per Patient (Range): 1 (1-4)
 - Histologic Subtypes
 - Leiomyosarcoma: 36 (31%)
 - STS NOS: 21 (18%)
 - Angiosarcoma: 13 (11%)
 - Liposarcoma: 11 (9%)
 - Other: 36 (31%)
 - No Variants Detected
 - Guardant: 6 (25%)
 - Tempus: 1 (2%)

- **Mutation Prevalence**

- **Actionable Mutations**

- **Assay Utilization Over Time**

- **Patients for whom NGS Altered Management**
 - Ewings Sarcoma
 - Leiomyosarcoma
 - Leiomyosarcoma
 - Chondrosarcoma
 - Synovial Sarcoma
 - STS NOS
 - STS NOS
 - STS NOS
 - Myxofibrosarcoma

- **Notable Cases**
 - Myxofibrosarcoma with TMB of 888
 - Leiomyosarcoma that is MSI-H
 - Intimal Sarcoma with NTRK3 Fusion

Conclusions

- 34% of patients had potentially actionable Mutations
- Treatment of 8% of patients was altered by NGS results
- Incidence of actionable mutations increased over time
- Partial responses in select, refractory patients

Acknowledgements

- Sponsor: Northwestern University; Support of The Brett Armin Sarcoma Foundation; Thanks to the generous support of Ron and Betty Krupp, in memory of their son Kenny
- B Schulte@northwestern.edu

Northwestern University, Feinberg School of Medicine, Chicago, IL; Department of Pathology Feinberg School of Medicine, Chicago, IL; City of Hope Cancer Center, Duarte, CA

Legend:

- PTEN Loss
- ALK Fusion
- MSI-H
- CDK4 Amplification
- IDH1
- Encorafenib
- BRAF V600E
- Palbociclib
- CCND1 Amplification
- NTRK Fusion
- Atezolizumab

Graphs:

- Impact of Next Generation Sequencing (NGS) On The Treatment of Patients with Sarcoma
- Mutation Prevalence
- Actionable Mutations
- Assay Utilization Over Time

Tables:

- Potentially Actionable Mutations
- Percentage of patients

Histology

- Ewings Sarcoma
- Leiomyosarcoma
- Synovial Sarcoma
- STS NOS
- Myxofibrosarcoma

Mutation

- PTEN Loss
- ALK Fusion
- MSI-H
- CDK4 Amplification
- IDH1
- BRAF V600E
- CCND1 Amplification
- NTRK Fusion
- High TMB

Treatment

- Copanlisib
- Alectinib
- Nivolumab
- Encorafenib
- Palbociclib
- Tarrectinib
- Atezolizumab